(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
对于定义域为的函数
,若有常数M,使得对任意的
,存在唯一的
满足等式
,则称M为函数
f (x)的“均值”.
(1)判断1是否为函数≤
≤
的“均值”,请说明理由;
(2)若函数为常数)存在“均值”,求实数a的取值范围;
(3)若函数是单调函数,且其值域为区间I.试探究函数
的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).
说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分
解:(1)对任意的,有
,
当且仅当时,有
,
故存在唯一,满足
, ……………………2分
所以1是函数的“均值”. ……………………4分
(另法:对任意的,有
,令
,
则,且
,
若,且
,则有
,可得
,
故存在唯一,满足
, ……………………2分
所以1是函数的“均值”. ……………………4分)
(2)当时,
存在“均值”,且“均值”为
;…………5分
当时,由
存在均值,可知对任意的
,
都有唯一的与之对应,从而有
单调,
故有或
,解得
或
或
, ……………………9分
综上,a的取值范围是或
. ……………………10分
(另法:分四种情形进行讨论)
(3)①当I 或
时,函数
存在唯一的“均值”.
这时函数的“均值”为
; …………………12分
②当I为时,函数
存在无数多个“均值”.
这时任意实数均为函数的“均值”; ……………………14分
③当I 或
或
或
或
或
时,
函数不存在“均值”. ……………………16分
[评分说明:若三种情况讨论完整且正确,但未用等价形式进行叙述,至多得6分;若三种情况讨论不完整,且未用等价形式叙述,至多得5分]
①当且仅当I形如、
其中之一时,函数
存在唯一的“均值”.
这时函数的“均值”为
; ……………………13分
②当且仅当I为时,函数
存在无数多个“均值”.
这时任意实数均为函数的“均值”; ……………………16分
③当且仅当I形如、
、
、
、
、
其中之一时,函数
不存在“均值”. ……………………18分
(另法:①当且仅当I为开区间或闭区间时,函数存在唯一的“均值”.这时函数
的均值为区间I两端点的算术平均数; ……………………13分
②当且仅当I为时,函数
存在无数多个“均值”.这时任意实数均为函数
的“均值”; ……………………16分
③当且仅当I为除去开区间、闭区间与之外的其它区间时,函数
不存在“均值”. ……………………18分)
评分说明:在情形①与②中,等价关系叙述正确但未正确求出函数“均值”,各扣1分
科目:高中数学 来源: 题型:
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若,
,
,求方程
在区间
内的解集;
(2)若点是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
查看答案和解析>>
科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试理科数学试题 题型:解答题
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若,
,
,求方程
在区间
内的解集;
(2)若点是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(文)已知数列中,
(1)求证数列不是等比数列,并求该数列的通项公式;
(2)求数列的前
项和
;
(3)设数列的前
项和为
,若
对任意
恒成立,求
的最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设函数是定义域为R的奇函数.
(1)求k值;
(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的
的取值范围;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.
查看答案和解析>>
科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试理科数学试题 题型:解答题
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若,
,
,求方程
在区间
内的解集;
(2)若点是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com