精英家教网 > 高中数学 > 题目详情
9.如图所示,已知OPQ是半径为1,圆心角为$\frac{π}{3}$的扇形,A是扇形弧PQ上的动点,AB∥OQ,OP与AB交于点B,AC∥OP,OQ与AC交于点C,求点A的位置,使平行四边形ABOC的面积最大,并求出这个最大面积.

分析 作AH⊥OP,H为垂足,则AH=sinα,OH=cosα,BH=$\frac{\sqrt{3}}{3}$sinα,可得OB=cosα-$\frac{\sqrt{3}}{3}$sinα.化简平行四边形ABOC的面积S′=OB•AH,等于 $\frac{\sqrt{3}}{3}$sin(2α+$\frac{π}{6}$)-$\frac{\sqrt{3}}{6}$.由0<α<$\frac{π}{3}$,可得当 2α+$\frac{π}{6}$=$\frac{π}{2}$时,S′取得最大值为 $\frac{\sqrt{3}}{6}$.

解答 解:由题意可得0<α<$\frac{π}{3}$,作AH⊥OP,H为垂足,
则AH=sinα,OH=cosα,tan∠ABH=$\frac{AH}{BH}$=tan$\frac{π}{3}$=$\sqrt{3}$,
故BH=$\frac{\sqrt{3}}{3}$sinα,
∴OB=cosα-$\frac{\sqrt{3}}{3}$sinα.
故平行四边形ABOC的面积S′=OB•AH=(cosα-$\frac{\sqrt{3}}{3}$sinα )sinα=sinαcosα-$\frac{\sqrt{3}}{3}$sin2α 
=$\frac{1}{2}$sin2α-$\frac{\sqrt{3}}{3}$×$\frac{1-cos2α}{2}$=$\frac{1}{2}$sin2α-$\frac{\sqrt{3}}{6}$cos2α-$\frac{\sqrt{3}}{6}$=$\frac{\sqrt{3}}{3}$sin(2α+$\frac{π}{6}$)-$\frac{\sqrt{3}}{6}$.
由于0<α<$\frac{π}{3}$,故$\frac{π}{6}$<2α+$\frac{π}{6}$<$\frac{5π}{6}$,
故当 2α+$\frac{π}{6}$=$\frac{π}{2}$时,S′取得最大值为 $\frac{\sqrt{3}}{6}$.

点评 本题主要考查两角和差的正弦、余弦公式的应用,二倍角公式,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A、B、C的对边分别为a、b、c,3(b2+c2)=3a2+2bc,且△ABC的面积S=5$\sqrt{2}$,则边长a的最小值为(  )
A.20B.2$\sqrt{5}$C.$\sqrt{5}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点(2,5)和(8,3)是函数y=-k|x-a|+b与y=k|x-c|+d的图象仅有的两个交点,那么a+b+c+d的值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以下命题中真命题的序号是(  )
①若棱柱被一平面所截,则分成的两部分不一定是棱柱;
②有两个面平行,其余各面都是梯形的几何体叫棱台;
③用一个平面去截圆锥,底面和截面之间的部分组成的几何体叫圆台;
④有两个面平行,其余各面都是平行四边形的几何体叫棱柱.
A.③④B.①④C.①②④D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线L:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),圆C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(1)当α=$\frac{π}{4}$时,求直线L与圆C交点的中点坐标;
(2)证明:直线L与圆C相交,并求最短弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在长方形ABCD中,AE=EB,三角形BEF的面积占长方形ABCD面积的$\frac{3}{16}$,那么BF:FC=3:1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$tanα=2,则\frac{{{{sin}^2}α-{{cos}^2}α+2}}{{2{{sin}^2}α+{{cos}^2}α}}$等于(  )
A.$\frac{13}{9}$B.$\frac{11}{9}$C.$\frac{6}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正三棱柱(底面是正三角形,侧棱垂直于底面)ABC-A1B1C1的底面边长为2,侧棱AA1=2,则异面直线AB1与BC1所成角的余弦值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设m∈R,过定点A的动直线x+my=0和过定点B的直线mx-y-m+3=0交于点P(x,y),则|PA|+|PB|的最大值是$2\sqrt{5}$.

查看答案和解析>>

同步练习册答案