精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是 ( )

A. x<1”“log2(x+1)<1”的充分不必要条件

B. 命题x>0,2x>1”的否定是x0≤0,≤1”

C. 命题ab,则ac2bc2的逆命题是真命题

D. 命题a+b≠5,则a≠2b≠3”的逆否命题为真命题

【答案】D

【解析】

对每一个选项逐一判断真假得解.

对于A,当x<1时,x+1<2,不能得出x+1>0,不能得出log2(x+1)<1,充分性不成立,故A错误;

对于B,命题x>0,2x>1”的否定是x0>0,≤1”,故B错误;

对于C,命题ab,则ac2bc2的逆命题是ac2bc2,则ab,是假命题,故C错误;

对于D,命题a+b≠5,则a≠2b≠3”的逆否命题是a=2b=3,则a+b=5”,是真命题,故D正确

故答案为:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下:

成绩/m

1.50

1.60

1.65

1.70

1.75

1.80

1.85

1.90

人数

2

3

2

3

4

1

1

1

分别求这些运动员的成绩的众数、中位数、平均数(保留到小数点后两位),并分析这些数据的含义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ ﹣lnx(a∈R).
(1)当a=1时,求函数f(x)的图象在点( ,f( ))处的切线方程;
(2)当a≥0时,记函数Γ(x)= ax2+(1﹣2a)x+ ﹣1+f(x),试求Γ(x)的单调递减区间;
(3)设函数h(a)=3λa﹣2a2(其中λ为常数),若函数f(x)在区间(0,2)上不存在极值,求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差x(℃)

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求回归方程,再用被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻的2组数据的概率.

(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y关于x的线性回归方程.

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,江的两岸可近似的看成两平行的直线,江岸的一侧有A,B两个蔬菜基地,江的另一侧点C处有一个超市.已知A、B、C中任意两点间的距离为20千米.超市欲在AB之间建一个运输中转站D,A,B两处的蔬菜运抵D处后,再统一经过货轮运抵C处.由于A,B两处蔬菜的差异,这两处的运输费用也不同.如果从A处出发的运输费为每千米2元,从B处出发的运输费为每千米1元,货轮的运输费为每千米3元.

(1)设∠ADC=α,试将运输总费用S(单位:元)表示为α的函数S(α),并写出自变量的取值范围;
(2)问中转站D建在何处时,运输总费用S最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,江的两岸可近似的看成两平行的直线,江岸的一侧有A,B两个蔬菜基地,江的另一侧点C处有一个超市.已知A、B、C中任意两点间的距离为20千米.超市欲在AB之间建一个运输中转站D,A,B两处的蔬菜运抵D处后,再统一经过货轮运抵C处.由于A,B两处蔬菜的差异,这两处的运输费用也不同.如果从A处出发的运输费为每千米2元,从B处出发的运输费为每千米1元,货轮的运输费为每千米3元.

(1)设∠ADC=α,试将运输总费用S(单位:元)表示为α的函数S(α),并写出自变量的取值范围;
(2)问中转站D建在何处时,运输总费用S最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,设直线过点A( ),B(3, ),且直线与曲线C:ρ=2rsinθ(r>0)有且只有一个公共点,求实数r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面PAD,AB∥CD,CD=2AB=2BC,M,N分别是棱PA,CD的中点.

(1)求证:PC∥平面BMN;
(2)求证:平面BMN⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AB=2,CD=4,BC= ,点E,F分别为AD,BC的中点.如果对于常数λ,在ABCD的四条边上,有且只有8个不同的点P使得 =λ成立,那么实数λ的取值范围为

查看答案和解析>>

同步练习册答案