精英家教网 > 高中数学 > 题目详情

【题目】已知函数,将此函数图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有(

①绕着x轴上一点旋转;②以x轴为轴,作轴对称;

③沿x轴正方向平移;④以x轴的某一条垂线为轴,作轴对称;

A.①③B.③④C.②③D.②④

【答案】B

【解析】

对各选项的变换,计算变换后的函数解析式,再与原函数的解析式比较后可得正确的选项.

对于①,设轴上的点为

则绕该点旋转后所得图象与原函数的图象关于对称,

故变换后图象的解析式为

的图象与图象重合,

对任意的恒成立,

,则.

为偶数,则

因为,此时的图象与图象不重合;

为奇数,则

因为,故此时的图象与图象不重合;

故①错误.

对于②,以x轴为轴,作轴对称,

故变换后图象的解析式为

因为,故的图象与不重合,故②错误.

对于③,若的图象向右平移个单位,

则变换后图象的解析式为

此时变换后的图象与原函数的图象重合,故③正确.

对于④,取直线,以该直线为轴,作轴对称,

则变换后所得图象的解析式为

此时变换后的图象与原函数的图象重合,故④正确.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为,设曲线与曲线的公共弦所在直线为l.

1)在直角坐标系下,求曲线与曲线的普通方程;

2)若以坐标原点为中心,直线l顺时针方向旋转后与曲线、曲线分别在第一象限交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1(﹣c0),F2c0)分別为双曲线1a0b0)的左、右焦点,以坐标原点O为圆心,c为半径的圆与双曲线在第二象限交于点P,若tanPF1F2,则该双曲线的离心率为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:幂势既同,则积不容异.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是半径为3的圆的三分之一,则该几何体的体积为(

A.πB.πC.4D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,并且经过点

1)求椭圆的标准方程;

2)一条斜率为的直线交椭圆于两点(不同于),直线的斜率分别为,满足,试判断直线是否经过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程与曲线的直角坐标方程;

2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于点.面积的最小值,并求此时四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中是实常数.

1)若,求的取值范围;

2)若,求证:函数的零点有且仅有一个;

3)若,设函数的反函数为,若是公差的等差数列且均在函数的值域中,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动互联技术的共享单车被称为新四大发明之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为x,市场占有率为y%),得结果如下表

年月

2019.11

2019.12

2020.1

2020.2

2020.3

2020.4

x

1

2

3

4

5

6

y

9

11

14

13

18

19

1)观察数据,可用线性回归模型拟合yx的关系,请用相关系数加以说明(精确到0.001);

2)求y关于x的线性回归方程,并预测该公司20206月份的市场占有率;

3)根据调研数据,公司决定再采购一批单车投入市场,现有采购成本分别为1000/辆和800/辆的甲、乙两款车型,报废年限不相同.考虑到公司的经济效益,该公司决定先对这两款单车各100辆进行科学模拟测试,得到两款单车使用寿命统计如下表:

报废年限

车辆数

车型

1

2

3

4

总计

甲款

10

40

30

20

100

乙款

15

35

40

10

100

经测算,平均每辆单车每年可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据,如果你是该公司的负责人,你会选择采购哪款车型?

参考数据:.

参考公式,相关系数,回归方程中斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,直线与圆相切.

1)求椭圆的方程;

2)过点的直线与椭圆交于不同两点,线段的中垂线为,求直线轴上的截距的取值范围.

查看答案和解析>>

同步练习册答案