精英家教网 > 高中数学 > 题目详情
18.下列式子中,正确的是(  )
A.-1+(-1)=2B.$\frac{1}{2}$+$\frac{1}{3}$=$\frac{1}{5}$
C.23•2n-1=23n-3D.$\frac{1}{101}$+$\frac{1}{202}$+$\frac{1}{303}$+$\frac{1}{606}$=$\frac{2}{101}$

分析 A.-1+(-1)=-2,即可判断出正误;
B.$\frac{1}{2}+\frac{1}{3}$=$\frac{5}{6}$≠$\frac{1}{5}$,即可判断出正误;
C.利用指数幂的运算性质,即可判断出正误;
D.通分化简即可判断出正误.

解答 解:A.-1+(-1)=-2,因此不正确;
B.$\frac{1}{2}+\frac{1}{3}$=$\frac{5}{6}$≠$\frac{1}{5}$,因此不正确;
C.23•2n-1=2n+2≠23n-3,因此不正确;
D.$\frac{1}{101}+\frac{1}{202}$+$\frac{1}{303}$+$\frac{1}{606}$=$\frac{6+3+2+1}{606}$=$\frac{2}{101}$,因此正确.
故选:D.

点评 本题考查了指数幂的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\sqrt{3}sinxcosx+{cos^2}x$
(1)求函数的单调递增区间
(2)在$△ABC中,f(A)=1,\overrightarrow{AB}•\overline{AC}=4$,求三角形的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为AB的中点.求:
(1)异面直线BD1与CE所成角的余弦值;
(2)点A到平面A1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线$x=\frac{π}{4}\;和\;x=\frac{5π}{4}$是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)图象的两条相邻的对称轴,则φ的值为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=secx?sinx的最小正周期T=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=ax2-(a+1)x+a.
(1)若a=2,解关于x的不等式f(x)>1;
(2)若对任意x>0,不等式f(x))>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{2}$=1的焦点在x轴上,以椭圆右顶点为焦点的抛物线标准方程为y2=16x.
(1)求椭圆C的离心率
(2)若动直线l的斜率为$-\frac{{\sqrt{2}}}{2}$,且与椭圆C交于不同的两点M、N,已知点Q$(-\sqrt{2},0)$,求$\overrightarrow{QM}•\overrightarrow{QN}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个五面体的三视图如图,正视图是等腰直角三角形,侧视图是直角三角形,部分边长如图所示,则此五面体的体积为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cos(2x-$\frac{π}{3}$)-cos(2x+$\frac{π}{3}$)+2cos2x-1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)设向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,t)(t≠0),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为α,若f(α)=1,求实数t的值.

查看答案和解析>>

同步练习册答案