精英家教网 > 高中数学 > 题目详情

已知函数f(x)=alnx+(a≠0)在(0,)内有极值.
(I)求实数a的取值范围;
(II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]时,求证:f(x2)﹣f(x1)≥ln2+

(1);(2)证明过程详见解析.

解析试题分析:本题主要考查导数的运算,利用导数研究函数的单调性及最值、不等式等基础知识,考查函数思想,突出考查综合运用数学知识和方法分析问题解决问题的能力.第一问,先对求导,由函数定义域可知,的分母为正数,设的分子为新函数,判断,所以,解得的取值范围;第二问,对求导,令,设出方程的两根,利用韦达定理得到两根之和、两根之积,判断导函数的正负,决定函数的单调性,求出最大值和最小值,代入求证的式子的左边,化简,得到,再求函数的最小值,通过不等式的传递性得到求证的表达式.
试题解析: (I)由),得:
∵a≠0,令,∴
, 则
(II)由(I)得:
)的两根为
,得
时,,函数f(x)单调递增;
时,,函数f(x)单调递减,


==(利用

则函数单调递增,

,则

考点:1.二次函数的性质;2.零点问题;3.利用导数判断函数的单调区间;4. 利用导数判断函数的最值;5.不等式的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,若在点处的切线斜率为
(Ⅰ)用表示
(Ⅱ)设,若对定义域内的恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
是函数的极值点,1和是函数的两个不同零点,且,求.
若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)当时判断的单调性;
(2)若在其定义域为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像过原点,且在处的切线为直线
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试求函数的单调区间和极值;
(2)若 直线与曲线相交于不同两点,若 试证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,数列,满足0<<1, ,数列满足
(Ⅰ)求函数的单调区间;
(Ⅱ)求证:0<<1;
(Ⅲ)若,则当n≥2时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间和极值;
(2)若函数在[1,4]上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求的单调区间;
(II)设,若上单调递增,求的取值范围.

查看答案和解析>>

同步练习册答案