精英家教网 > 高中数学 > 题目详情

已知不等式的解集是
(1)求a,b的值;
(2)解不等式 (c为常数) .

(1) 
(2)当时,
时,
时,

解析试题分析:(1)由得,
根据即得 
(2)原不等式首先化为,即.
讨论等三种情况.
试题解析:(1)          4分
(2)原不等式可化为,即.
(2)当时,不等式的解集为
时,不等式的解集为
时,不等式的解集为
考点:对数函数的性质,一元二次不等式的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;
(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,.
(Ⅰ)证明:
(Ⅱ)求证:在数轴上,介于之间,且距较远;
(Ⅲ)在数轴上,之间的距离是否可能为整数?若有,则求出这个整数;若没有,
说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种海洋生物身体的长度(单位:米)与生长年限t(单位:年)
满足如下的函数关系:.(设该生物出生时t=0)
(1)需经过多少时间,该生物的身长超过8米;
(2)设出生后第年,该生物长得最快,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:

且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一块边长为4米的正方形钢板,现对其进行切割,焊接成一个长方体无盖容器(切、焊损耗忽略不计),有人用数学知识作了如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成长方体。
(Ⅰ)求这种切割、焊接而成的长方体的最大容积.
(Ⅱ)请问:能重新设计,使所得长方体的容器的容积吗?若能、给出你的一种设计方案。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长为20m的铁丝网,一边靠墙,围成三个大小相等、紧紧相连的长方形,那么长方形长、宽、各为多少时,三个长方形的面积和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知函数
(Ⅰ)求函数的最小值;
(Ⅱ)求证:
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设函数是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当时的解析式为.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的零点.

查看答案和解析>>

同步练习册答案