精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对的边分别是a、b、c,若∠C=
2
3
π,a、b、c依次成等差数列,且公差为2.
(1)求c;
(2)如图,A′,B′分别在射线CA,CB上运动,设∠A′B′C=θ,试用θ表示线段B'C的长,并求其范围.
考点:余弦定理
专题:解三角形
分析:(1)由等差数列的性质用c表示出a、b,并求出c的范围,由余弦定理和题意列出关于c的方程,再求出c的值;
(2)由内角和定理求出∠B′A′C,再求出θ的范围,由正弦定理求出B′C,由θ的范围和正弦函数的性质求出线段B′C的范围.
解答: 解:(1)因为a、b、c成等差,且公差为2,
所以a=c-4,b=c-2,则c>4
又cos C=-
1
2
,所以由余弦定理得,
a2+b2-c2
2ab
=-
1
2

(c-4)2+(c-2)2-c2
2(c-4)(c-2)
=-
1
2

化简得c2-9c+14=0,解得c=7或c=2,
又c>4,所以c=7,
(2)在△A′B′C中,∠B′A′C=
π
3
,则0<θ<
π
3

由正弦定理得
A′C
sin∠A′B′C
=
B′C
sin∠B′A′C
=
A′B′
sin∠A′CB′

A′C
sinθ
=
B′C
sin(
π
3
-θ)
=
7
sin
3

所以B′C=
14
3
3
sin(
π
3
-θ),
由θ∈(0,
π
3
)得0<
π
3
-θ<
π
3
,则0<sin (
π
3
-θ)<
3
2

座椅0<
14
3
3
sin(
π
3
-θ)<7,
即线段B′C的范围为(0,7).
点评:本题考查正弦、余弦定理,等差数列的性质,以及正弦函数的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:点A(2,2)、点B(4,4)、点C(4,2)是⊙D上的三个点.
(Ⅰ)求⊙D的一般方程;
(Ⅱ)直线l:x-y-4=0,点P在直线l上运动,过点P作⊙D的两贴切线,切点分别是M、N,求当PD⊥l时四边形PMDN的面积,并求这时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁RB)=(  )
A、(-3,5]
B、(-3,-1]
C、(-3,-1)
D、(-3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两个物体沿直线运动的方程分别是s1=t3-2t2+t-3,s2=3t2-t+1,则在t=3秒时两个物体运动的瞬时速度关系是(  )
A、乙比甲大B、甲比乙大
C、甲乙相等D、甲乙无法比较

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:
sin4θ
a
+
cos4θ
b
=
1
a+b
,求证:
sin8θ
a3
+
cos8θ
b3
=
1
(a+b)3

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的首项为1,且满足an≥1,a2n+1+a2n+1=2(an+1+an)+2an+1an(n∈N+
(1)求a2、a3的值;
(2)若{an}为单调递增数列,求{an}的通项;
(3)设bn=(-1)nan,Sn为数列{bn}的前n项和,求S2n的最小值,并求S8的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C和y轴相切,圆心在直线x-3y=0上,且被直线y=x接的弦长为2
7

(1)求圆C的方程;
(2)若圆C是过球心C的截面圆,求球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
1-cosα
1+cosα
+
1+cosα
1-cosα
(α为第四象限角).

查看答案和解析>>

科目:高中数学 来源: 题型:

表中显示的是某商品从4月份到10月份的价格变化统计如下:
 x(月) 4 5 6 7 8 910 
 y(元) 15 16.9 19 20.9 23.1 25.1 27
在一次函数、二次函数、指数函数、对数函数这四个函数模型中,请确认最能代表上述变化的函数,并预测该商品11月份的价格为
 
元(精确到整数).

查看答案和解析>>

同步练习册答案