精英家教网 > 高中数学 > 题目详情
已知F1、F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,以线段F1F2为斜边作等腰直角三角形F1MF2,如果线段MF1的中点在双曲线上,则该双曲线的离心率是(  )
A、
6
+
2
B、
6
-
2
C、
10
+
2
2
D、
10
-
2
2
分析:记双曲线的焦距为2C、依题意知点M在y轴上,不妨设F1、F2分别是双曲线的左、右焦点,M在y轴正半轴上,则可表示出F1和M的坐标,进而可表示出线段MF1的中点坐标代入双曲线方程,化简整理即可求得e.
解答:解:记双曲线的焦距为2C、依题意知点M在y轴上,
不妨设F1、F2分别是双曲线的左、右焦点,M在y轴正半轴上,则有F1(-c,0),M(0,c),
∴线段MF1的中点坐标是(-
c
2
c
2
).
又∵线段MF1的中点在双曲线上,
(-
c
2
)
2
a2
-
(
c
2
)
2
b2
=1,即
c2
a2
-
c2
b2
=4,
c2
a2
-
c2
c2-a2
=4,(e22-6e2+4=0,e2=3±
5
.又e2>1,
∴e2=3
5

∵(
10
+
2
2
2=3+
5

∴e=
10
+
2
2

故选C
点评:本题主要考查了直线与双曲线的关系以及求离心率的问题.考查了学生的综合分析问题和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,P为双曲线左支上任一点,若
|PF2|2
|PF1|
的最小值为8a,则双曲线的离心率e的取值范围是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是双曲
x2
9
-
y2
16
=1
的左、右两个焦点,点P是双曲线上一点,且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知F1、F2是双曲数学公式的左、右两个焦点,点P是双曲线上一点,且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源:2013年陕西省西安市西工大附中高考数学一模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学四模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步练习册答案