精英家教网 > 高中数学 > 题目详情

【题目】知函数.

(1曲线的切线方程;

(2.

(i实数最大值;

(ii证明不等式:.

【答案】(1);(2)(i;(ii证明见解析.

【解析】

试题分析:(1)先求出导函数,再根据由点斜式可得曲线的切线方程;(2)(i等价于 ,讨论时、当时两种情况,排除不合题意的的值,即可得实数最大值,(ii整理得,令,进而可证原不等式.

试题解析:(1题意

线方程为

(2(i题意知

(1)时,

单调递增,又

时,

不符合题意.

(2)当时,

时,成立,

成立,∴单调递减又

时,

时,符合题意.

②若时,对称轴

单调递增,

时,

单调递增,

不符合题意,

上所述.

(ii)i时,

整理得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

(1)根据已有数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求证:平面EBC⊥平面EBD;

(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x2﹣4ax+a2﹣2a+2在区间[0,2]上有最小值3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)若.

i)求实数的最大值;

ii)证明不等式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】否定“自然数中恰有一个偶数”时正确的反设为( )

A. 都是奇数 B. 至少有两个偶数

C. 都是偶数 D. 中都是奇数或至少有两个偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

(1)当时,解不等式

(2)若恒成立,求的取值范围;

(3)若关于的方程在区间内的解恰有一个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为

(Ⅰ)请将上述列联表补充完整;

(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为的直线nl于点A, 交⊙M于另一点B,且AOOB=2.

(1)求⊙M和抛物线C的方程;

(2)若P为抛物线C上的动点,求的最小值;

(3)过l上的动点Q向⊙M作切线,切点为ST,求证:直线ST恒过一个定点,并求该定点的坐标.

查看答案和解析>>

同步练习册答案