【题目】已知函数.
(1)求曲线在点处的切线方程;
(2)若且,.
(i)求实数的最大值;
(ii)证明不等式:.
【答案】(1);(2)(i);(ii)证明见解析.
【解析】
试题分析:(1)先求出导函数,再根据,由点斜式可得曲线在点处的切线方程;(2)(i)等价于 ,讨论时、当时两种情况,排除不合题意的的值,即可得实数的最大值,(ii)当时整理得,令,则,进而可证原不等式.
试题解析:(1)由题意且,
∴,
又,
∴在点处的切线方程为即
(2)(i)由题意知,
设,
则,
设,
则,
(1)当时,∵,∴,
∴在上单调递增,又,
∴时,,又,
∴,不符合题意.
(2)当时,设,
①若,即时,恒成立,
即在恒成立,∴在上单调递减又,
∴时,,,,
时,,,,符合题意.
②若,即时,的对称轴,
∴在上单调递增,
∴时,,
∴,
∴在上单调递增,
∴,
而,∴,不符合题意,
综上所述.
(ii)由(i)知时,,
当时整理得,
令,则,
∴,
∴,
∴,
即
科目:高中数学 来源: 题型:
【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求证:平面EBC⊥平面EBD;
(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】否定“自然数、、中恰有一个偶数”时正确的反设为( )
A. 、、都是奇数 B. 、、至少有两个偶数
C. 、、都是偶数 D. 、、中都是奇数或至少有两个偶数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为.
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线C:y2=2px(p>0)的准线为l,焦点为F.⊙M的圆心在x轴的正半轴上,且与y轴相切.过原点O作倾斜角为的直线n交l于点A, 交⊙M于另一点B,且AO=OB=2.
(1)求⊙M和抛物线C的方程;
(2)若P为抛物线C上的动点,求的最小值;
(3)过l上的动点Q向⊙M作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com