精英家教网 > 高中数学 > 题目详情
11.已知圆C的参数方程为$\left\{{\begin{array}{l}{x=2+3cosθ}\\{y=3sinθ-2}\end{array}}\right.(θ为参数)$,以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+2ρcosθ=3,求直线l被圆C截得的弦长.

分析 先求出圆和直线的直角坐标方程,再求出圆心C(2,-2)到直线l的距离d和圆半径r,利用勾股定理能求出直线l被圆C截得的弦长.

解答 解:∵圆C的参数方程为$\left\{{\begin{array}{l}{x=2+3cosθ}\\{y=3sinθ-2}\end{array}}\right.(θ为参数)$,
∴圆C的直角坐标方程为(x-2)2+(y+2)2=9,
∵直线l的极坐标方程为ρsinθ+2ρcosθ=3,
∴直线l的直角坐标方程为2x+y=3,
∵圆心C(2,-2)到直线l的距离d=$\frac{|2×2-2-3|}{\sqrt{4+1}}$=$\frac{\sqrt{5}}{5}$,圆半径r=3,
∴直线l被圆C截得的弦长|AB|=2$\sqrt{{3}^{2}-(\frac{\sqrt{5}}{5})^{2}}$=$\frac{4\sqrt{55}}{5}$.

点评 本题考查直线被圆截得的弦长的求法,是基础题,解题时要认真审题,注意直角坐标和极坐标互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x2-ax+4在(-∞,1)上是减函数,则实数a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{kx+1}{{x}^{2}+c}$(c>1,k∈R)恰有一个极大值点和一个极小值点,其中的一个极值点是x=-c.
(Ⅰ)求函数f(x)的另一个极值点;
(Ⅱ)记函数f(x)的极大值为M、极小值为m,若M-m≥1,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在长方体ABCD-A1B1C1D1中,已知AB=BC=2,BB1=3,连结BC1,过B1作B1E⊥BC1交CC1于点E.
(1)求证:AC1⊥平面B1D1E;
(2)求三棱锥C1-B1D1E的体积;
(3)求C1到面B1D1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一个焦点是(2,0),则其渐近线的方程为(  )
A.$\sqrt{3}x±y=0$B.3x±y=0C.$x±\sqrt{3}y=0$D.x±3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.曲线C1的参数方程为:$\left\{\begin{array}{l}{x=1+tcos\frac{π}{4}}\\{y=5+tsin\frac{π}{4}}\end{array}\right.$(t为参数),曲线C2的参数方程为:$\left\{\begin{array}{l}{x=cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ为参数).
(1)求曲线C2的普通方程,若以坐标原点为极点,x轴的正半轴为极轴建立坐标系,求曲线C1的极坐标系方程;
(2)若点P为曲线C2上任意一点,求点P到曲线C1距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱柱ABC-A1B1C1中,D,E分别为A1C1,BB1的中点,B1C⊥AB,侧面BCC1B1为菱形.求证:
(Ⅰ)DE∥平面ABC1
(Ⅱ)B1C⊥DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:x2+y2+4x+6y+12=0,过点P(1,1)做圆C的两条切线,切点分别为A、B.
(1)求切线长;
(2)求AB直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.等腰直角三角形ABC中,AB=BC=2,将斜边AC绕直角边AB旋转90°后得到旋转体A-BCD,如图所示,求:
(1)若E是CD的中点,求直线AE与面BCD所成的角;
(2)求异面直线AC和BD所成的角;(3)求旋转体A-BCD的体积V1和三棱锥A-BCD的体积V2之比.

查看答案和解析>>

同步练习册答案