精英家教网 > 高中数学 > 题目详情

【题目】已知函数上为增函数,,为常数, .

(1)的值;(2)上为单调函数,的取值范围;

(3),若在上至少存在一个,使得成立,求的取值范围.

【答案】(1) (2) (3)

【解析】

试题分析:1)由题意可知.由θ∈(0,π),知sinθ>0.再由sinθ≥1,结合θ∈(0π),可以得到θ的值;2)由题设条件知(f(x)g(x))或者在[1,+)恒成立.由此知,由此可知m的取值范围;3)构造Fx=fx-gx-hx),.由此入手可以得到m的取值范围

试题解析:1)由题意:上恒成立,即

上恒成立,

只需sin

(2) (1),f(x)-g(x)=-,,由于f(x)-g(x)在其定义域内为单调函数,则上恒成立,即上恒成立,故,综上,m的取值范围是

3)构造函数F(x)=f(x)-g(x)-h(x),,

得,,所以在上不存在一个,使得

m>0时,,因为,所以上恒成立,故F(x)上单调递增,,故m的取值范围是

另法:(3)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知ABC是锐角三角形,cos22A+sin2A=1.

)求角A;

)若BC=1,B=x,求ABC的周长f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为.

(1)当时,求函数的单调区间;

(2)若对满足的一切的值,都有,求实数的取值范围;

(3)若对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,已知四棱锥中,底面为菱形,平面分别是的中点.

I)证明:平面

II)取,在线段上是否存在点,使得与平面所成最大角的正切值为,若存在,请求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年1月2日凌晨某公司公布的元旦全天交易数据显示,天猫元旦当天全天的成交金额为315.5亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了1月1日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.

I)先求出的值,再将如图4所示的频率分布直方图绘制完整;

II)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,

购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据

此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?

参考数据:

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某飞机失联,经卫星侦查,其最后出现在小岛附近,现派出四艘搜救船,为方便联络,船始终在以小岛为圆心,100海里为半径的圆上,船构成正方形编队展开搜索,小岛在正方形编队外(如图).设小岛的距离为船到小岛的距离为.

(1)请分别求关于的函数关系式,并分别写出定义域;

(2)当两艘船之间的距离是多少时搜救范围最大(即最大)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,证明:函数不是奇函数;

2)判断函数的单调性,并利用函数单调性的定义给出证明;

3)若是奇函数,且时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点,过点的直线交抛物线两点.

(Ⅰ)若点满足,求直线的方程;

(Ⅱ)为直线上任意一点,过点的垂线交椭圆两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一批产品需要原材料500吨,每吨原材料可创造利润12万元,该公司通过设备升级,生产这批产品所需原材料减少了吨,且每吨原材料创造的利润提高;若将少用的吨原材料全部用于生产公司新开发的产品,每吨原材料创造的利润为万元

1若设备升级后生产这批产品的利润不低于原来生产该批产品的利润,求的取值范围;

2若生产这批产品的利润始终不高于设备升级后生产这批产品的利润,求的最大值

查看答案和解析>>

同步练习册答案