精英家教网 > 高中数学 > 题目详情

【题目】某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.

【答案】
(1)解:设“选出的3名同学是来自互不相同学院”为事件A,

所以选出的3名同学是来自互不相同学院的概率为


(2)解:随机变量X的所有可能值为0,1,2,3, (k=0,1,2,3)

所以随机变量X的分布列是

X

0

1

2

3

P

随机变量X的数学期望


【解析】(1)利用排列组合求出所有基本事件个数及选出的3名同学是来自互不相同学院的基本事件个数,代入古典概型概率公式求出值;(2)随机变量X的所有可能值为0,1,2,3, (k=0,1,2,3)列出随机变量X的分布列求出期望值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

求曲线的直角坐标方程,并指出其表示何种曲线;

设直线与曲线交于两点,若点的直角坐标为

试求当时, 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前项和为Sn , 且a2=2,S5=15,数列{bn}的前项和为Tn , 且b1= ,2nbn+1=(n+1)bn(n∈N*
(Ⅰ)求数列{an}通项公式an及前项和Sn
(Ⅱ) 求数列{bn}通项公式bn及前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x﹣8,g(x)=2x2﹣5x﹣18
(1)求不等式g(x)<0的解集
(2)若对一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求的最大值;

(2)讨论函数的单调性;

(3)若在定义域内恒成立,求实数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知命题p:方程 表示焦点在y轴的椭圆;命题q:关于x的不等式x2﹣2x+m>0的解集是R; 若“p∧q”是假命题,“p∨q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C为△ABC的三个内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为:x2+y2﹣2mx﹣2y+4m﹣4=0,(m∈R).
(1)试求m的值,使圆C的面积最小;
(2)求与满足(1)中条件的圆C相切,且过点(1,﹣2)的直线方程.

查看答案和解析>>

同步练习册答案