分析 如图所示,连接CE,BD,相交于点O1,过点O1作OO1⊥平面BCDE.设等边三角形ABC的中心为O2点,过O2点作OO2⊥平面ABC,点O为OO2与OO1的交点,则点O为四棱锥A-BCDE外接球的球心.利用正方形与等边三角形的有关知识即可得出四棱锥A-BCDE外接球的半径R,再利用球的表面积计算公式即可得出.
解答 解:如图所示,
连接CE,BD,相交于点O1,过点O1作OO1⊥平面BCDE.
设等边三角形ABC的中心为O2点,过O2点作OO2⊥平面ABC,点O为OO2与OO1的交点,
则点O为四棱锥A-BCDE外接球的球心.
∵底面是边长为4的正方形,∴O1E=2$\sqrt{2}$.
由△ABC是边长为4的等边三角形,可得OO1=$\frac{2\sqrt{3}}{3}$.
∴四棱锥A-BCDE外接球的半径R=$\sqrt{(\frac{2\sqrt{3}}{3})^{2}+(2\sqrt{2})^{2}}$=$\sqrt{\frac{28}{3}}$.
∴四棱锥A-BCDE外接球的表面积=4πR2=$\frac{112π}{3}$.
故答案为:$\frac{112π}{3}$.
点评 本题考查了线面由于面面垂直的性质、正方形与等边三角形的性质、勾股定理、球的表面积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
评分 | 低于65分 | 65分到85分 | 高于85分 |
评价等级 | 差 | 正常 | 优 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 500($\sqrt{3}$+1)m | B. | 500m | C. | 500($\sqrt{2}$+1)m | D. | 1000m |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{π}{8}$ | B. | 0 | C. | $\frac{π}{8}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com