精英家教网 > 高中数学 > 题目详情
16.已知四棱锥A-BCDE的底面是边长为4的正方形,面ABC⊥底面BCDE,且AB=AC=4,则四棱锥A-BCDE外接球的表面积为$\frac{112π}{3}$.

分析 如图所示,连接CE,BD,相交于点O1,过点O1作OO1⊥平面BCDE.设等边三角形ABC的中心为O2点,过O2点作OO2⊥平面ABC,点O为OO2与OO1的交点,则点O为四棱锥A-BCDE外接球的球心.利用正方形与等边三角形的有关知识即可得出四棱锥A-BCDE外接球的半径R,再利用球的表面积计算公式即可得出.

解答 解:如图所示,
连接CE,BD,相交于点O1,过点O1作OO1⊥平面BCDE.
设等边三角形ABC的中心为O2点,过O2点作OO2⊥平面ABC,点O为OO2与OO1的交点,
则点O为四棱锥A-BCDE外接球的球心.
∵底面是边长为4的正方形,∴O1E=2$\sqrt{2}$.
由△ABC是边长为4的等边三角形,可得OO1=$\frac{2\sqrt{3}}{3}$.
∴四棱锥A-BCDE外接球的半径R=$\sqrt{(\frac{2\sqrt{3}}{3})^{2}+(2\sqrt{2})^{2}}$=$\sqrt{\frac{28}{3}}$.
∴四棱锥A-BCDE外接球的表面积=4πR2=$\frac{112π}{3}$.
故答案为:$\frac{112π}{3}$.

点评 本题考查了线面由于面面垂直的性质、正方形与等边三角形的性质、勾股定理、球的表面积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某中学为了解学生对学校食堂就餐质量的评价,在午餐和晚餐时间分别从食堂随机调查了10名用餐学生,得到他们对食堂就餐质量的评分茎叶图如图:

(1)根据茎叶图计算学生对食堂午餐评分的平均值;
(2)根据学生的评分,将学生对食堂的评分分为三个等级:
评分低于65分65分到85分高于85分
评价等级正常
假设学生对食堂两餐的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求学生对食堂两餐的评价不在同一等级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,若AB=1,BC=2,CA=$\sqrt{5}$,则$\overrightarrow{AB}$$•\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$$+\overrightarrow{CA}$•$\overrightarrow{AB}$的值是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线C1的极坐标方程p2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,曲线C1经过坐标变换$\left\{{\begin{array}{l}{x=2x'}\\{y=\sqrt{3}y'}\end{array}}$得到曲线C2,直线l的参数方程为$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数,t∈R)
(Ⅰ)求直线l的普通方程和曲线C1的直角坐标方程;
(Ⅱ)若P为曲线C2上的点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在直角坐标系xoy中,曲线C1,C2的参数方程分别为$\left\{\begin{array}{l}x=\sqrt{5}cosθ\\ y=\sqrt{5}sinθ\end{array}\right.$(θ为参数)和$\left\{\begin{array}{l}x=\sqrt{5}-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)则曲线C1,C2的交点的极坐标(5,$\frac{3π}{2}$)或(5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:
(1)AC⊥BD           (2)AB与平面BCD成60°的角
(3)△ACD是等边三角形 (4)AB与CD所成的角为60°
正确结论的编号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某登山队在山脚A处测得山顶B的仰角为45°,沿倾斜角为30°的斜坡前进1 000m后到达D处,又测得山顶的仰角为60°,则山的高度BC为(  )
A.500($\sqrt{3}$+1)mB.500mC.500($\sqrt{2}$+1)mD.1000m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\frac{{{{({x+1})}^0}}}{{\sqrt{1-x}}}$,则其定义域为{x|x<1且x≠-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(|φ|<$\frac{π}{2}$)的图象可以由g(x)=2$\sqrt{2}$sinxcosx的图象向x轴负方向平移$\frac{π}{4}$个单位得到,则φ的值为(  )
A.-$\frac{π}{8}$B.0C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

同步练习册答案