精英家教网 > 高中数学 > 题目详情

已知数列的前项和为,且,数列满足.

(1)求

(2)求数列的前项和.

 

【答案】

(1),;(2)

【解析】

试题分析:(1)由数列前项和定义,得,当时,有,此时需要对表达式检验是否满足,从而求出的通项公式,再由等式,得,从而求出的通项公式;(2)由(1)将,的通项公式相乘可得数列的通项公式,所以所求前项和,观察相加各项的特点可用错位相减法求出(错位相减法是求数列前项和的常用方法,它适用于如果一个数列的各项是由一个等差数列和一个等比数列的对应各项之积构成的).

试题解析:(1)由,得

时,

时,

,得.

(2)由(1)知,所以

所以所求数列的前项和.

考点:1.数列通项公式;2.数列前项和公式.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分14分)

已知数列的前项和为,若

(Ⅰ)求证是等差数列,并求出的表达式;

(Ⅱ) 若,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列的前项和为,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?

查看答案和解析>>

科目:高中数学 来源:2011届福建省龙岩市高三上学期期末考试数学理卷(非一级校) 题型:解答题

(本题满分13分)
已知数列的前项和为,满足.
(Ⅰ)证明:数列为等比数列,并求出
(Ⅱ)设,求的最大项.

查看答案和解析>>

科目:高中数学 来源:2011年四川省泸县二中高2013届春期重点班第一学月考试数学试题 题型:解答题

(本小题14分)已知数列{}的前项和为,且=);=3
),
(1)写出;
(2)求数列{},{}的通项公式
(3)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:2015届广东省高一下学期期中数学试卷(解析版) 题型:解答题

已知数列的前项和为,且

(1)求数列的通项公式;

(2)令,数列的前项和为,若不等式 对任意恒成立,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案