精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱的所有棱长都是 平面 分别是 的中点.

)求证: 平面

)求二面角的余弦值.

)求点到平面的距离.

【答案】(1)见解析;(2);(3)1

【解析】试题分析:1根据三角形相似得根据直棱柱性质得又由等边三角形性质得,所以由线面垂直判定定理得平面最后根据线面垂直判定定理得结论2建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,再根据向量数量积求夹角,最后根据二面角与向量夹角关系求二面角的余弦值.3根据向量投影得点到平面的距离为,再利用向量数量积求夹角可得结果

试题解析:)证明:∵平面 平面

是等边三角形,∴,又

平面

为原点建立空间直角坐标系如图所示:

平面

设平面的法向量为,则

,又为平面的法向量,

∴二面角的余弦值为

∴直线与平面所成角的正弦值为∴点到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,当输出的结果S为0时,判断框中应填(
A.n≤4
B.n≤5
C.n≤7
D.n≤8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前项和为Sn , 若点An(n, )在函数f(x)=﹣x+c的图像上运动,其中c是与x无关的常数且a1=3.
(1)求数列{an}的通项公式;
(2)设bn=tanan+1tanan , tan195+tan3=atan2,求数列{bn}的前99项和(用含a的式子表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数.

(1)判断并证明上的单调性.

(2)若对任意实数t,不等式恒成立,求实数k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为1,线段上有两个动点,则下列结论中正确结论的序号是__________

②直线与平面所成角的正弦值为定值

③当为定值,则三棱锥的体积为定值;

④异面直线所成的角的余弦值为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为直角梯形, ,且 .

(1)求证:平面平面

(2)设,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.

(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)

(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面ABCD为菱形,且∠ABC=60°,
AB=PC=2,PA=PB=

(1)求证:平面PAB⊥平面ABCD;
(2)设H是PB上的动点,求CH与平面PAB所成最大角的正切值.

查看答案和解析>>

同步练习册答案