精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)axx2g(x)xlnaa>1.

(1)求证:函数F(x)f(x)g(x)(0,+∞)上单调递增;

(2)若函数y3有四个零点,求b的取值范围;

(3)若对于任意的x1x2∈[1,1]时,都有|F(x2)F(x1)|≤e22恒成立,求a的取值范围.

【答案】1)见解析(2(20)∪(2,+∞)3(1e2]

【解析】

(1)∵F(x)f(x)g(x)axx2xlna

F′(x)ax·lna2xlna(ax1)lna2x.

a>1x>0ax1>0lna>0,2x>0

x∈(0,+∞)时,F′(x)>0,即函数F(x)在区间(0,+∞)上单调递增.

(2)(1)知当x∈(0)时,F′(x)<0

F(x)(0)上单调递减,在(0,+∞)上单调递增.

F(x)的最小值为F(0)1.30

F(x)b3F(x)b3

要使函数y3有四个零点,只需

b>4,即>0

解得b>22<b<0.

b的取值范围是(20)∪(2,+∞)

(3)∵x1x2∈[1,1],由(1)F(x)(0)上单调递减,在(0,+∞)上单调递增,

F(x)minF(0)1.

从而再来比较F(1)F(1)的大小即可.

F(1)1lnaF(1)a1lna

F(1)F(1)a2lna.

H(x)x2lnx(x>0)

H′(x)1>0

H(x)(0,+∞)上单调递增.

a>1H(a)>H(1)0.∴F(1)>F(1)

∴|F(x2)F(x1)|的最大值为|F(1)F(0)|alna

要使|F(x2)F(x1)|≤e22恒成立,只需alna≤e22即可.令h(a)alna(a>1)h′(a)1>0h(a)(1,+∞)上单调递增.h(e2)e22只需h(a)≤h(e2),即1<a≤e2.a的取值范围是(1e2]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,其中.对一切恒成立,则①;②;③既不是奇函数也不是偶函数;④的单调递增区间是;⑤存在经过点的直线与函数的图像不相交.以上结论正确的是________________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD中平面PAD⊥平面ABCDABCDABADMAD中点,PAPDADAB2CD2

1)求证:平面PMB⊥平面PAC

2)求二面角APCD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,椭圆的长轴为短轴,且两个椭圆的离心率相同,设O为坐标原点,点AB分别在椭圆上,若,则直线AB的斜率k为( .

A.1B.-1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 满足约束条件,若取得最大值的最优解不唯一,则实数的值为__________

【答案】

【解析】由题可知若取得最大值的最优解不唯一则必平行于可行域的某一边界,如图:要Z最大则直线与y轴的截距最大即可,当a<0时,则平行AC直线即可故a=-2,当a>0时,则直线平行AB即可,故a=1

点睛:线性规划为常考题型,解决此题务必要理解最优解个数为无数个时的条件是什么,然后根据几何关系求解即可

型】填空
束】
16

【题目】《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约一,为实,一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以 分别表示三角形的面积,大斜,中斜,小斜; 分别为对应的大斜,中斜,小斜上的高;则 .若在 ,根据上述公式,可以推出该三角形外接圆的半径为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1在点处的切线方程为,求的值;

2)对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为:为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.

(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;

(Ⅱ)设点P的直角坐标为,若直线l与曲线C分别相交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为六个小组(所调查的居民平均每天运动时长均在内),得到的频率分布直方图如图所示.

1)求出图中的值,并估计这名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);

2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在时间段内应抽出多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知拋物线C经过点,其焦点为FM为抛物线上除了原点外的任一点,过M的直线lx轴、y轴分别交于AB两点.

求抛物线C的方程以及焦点坐标;

的面积相等,证明直线l与抛物线C相切.

查看答案和解析>>

同步练习册答案