【题目】已知函数f(x)=ax+x2,g(x)=xlna,a>1.
(1)求证:函数F(x)=f(x)-g(x)在(0,+∞)上单调递增;
(2)若函数y=-3有四个零点,求b的取值范围;
(3)若对于任意的x1,x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.
【答案】(1)见解析(2)(2-,0)∪(2+,+∞)(3)(1,e2]
【解析】
(1)∵F(x)=f(x)-g(x)=ax+x2-xlna,
∴F′(x)=ax·lna+2x-lna=(ax-1)lna+2x.
∵a>1,x>0,∴ax-1>0,lna>0,2x>0,
∴当x∈(0,+∞)时,F′(x)>0,即函数F(x)在区间(0,+∞)上单调递增.
(2)由(1)知当x∈(-∞,0)时,F′(x)<0,
∴F(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
∴F(x)的最小值为F(0)=1.由-3=0,
得F(x)=b-+3或F(x)=b--3,
∴要使函数y=-3有四个零点,只需
即b->4,即>0,
解得b>2+或2-<b<0.
故b的取值范围是(2-,0)∪(2+,+∞).
(3)∵x1,x2∈[-1,1],由(1)知F(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴F(x)min=F(0)=1.
从而再来比较F(-1)与F(1)的大小即可.
F(-1)=+1+lnaF(1)=a+1-lna,
∴F(1)-F(-1)=a--2lna.
令H(x)=x--2lnx(x>0),
则H′(x)=1+-==>0,
∴H(x)在(0,+∞)上单调递增.
∵a>1,∴H(a)>H(1)=0.∴F(1)>F(-1).
∴|F(x2)-F(x1)|的最大值为|F(1)-F(0)|=a-lna,
∴要使|F(x2)-F(x1)|≤e2-2恒成立,只需a-lna≤e2-2即可.令h(a)=a-lna(a>1),h′(a)=1->0,∴h(a)在(1,+∞)上单调递增.∵h(e2)=e2-2,∴只需h(a)≤h(e2),即1<a≤e2.故a的取值范围是(1,e2]
科目:高中数学 来源: 题型:
【题目】设,其中.若对一切恒成立,则①;②;③既不是奇函数也不是偶函数;④的单调递增区间是;⑤存在经过点的直线与函数的图像不相交.以上结论正确的是________________.(写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,M为AD中点,PA=PD,AD=AB=2CD=2.
(1)求证:平面PMB⊥平面PAC;
(2)求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,椭圆以的长轴为短轴,且两个椭圆的离心率相同,设O为坐标原点,点A、B分别在椭圆、上,若,则直线AB的斜率k为( ).
A.1B.-1C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, 满足约束条件,若取得最大值的最优解不唯一,则实数的值为__________.
【答案】或
【解析】由题可知若取得最大值的最优解不唯一则必平行于可行域的某一边界,如图:要Z最大则直线与y轴的截距最大即可,当a<0时,则平行AC直线即可故a=-2,当a>0时,则直线平行AB即可,故a=1
点睛:线性规划为常考题型,解决此题务必要理解最优解个数为无数个时的条件是什么,然后根据几何关系求解即可
【题型】填空题
【结束】
16
【题目】《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约一,为实,一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以, , , 分别表示三角形的面积,大斜,中斜,小斜; , , 分别为对应的大斜,中斜,小斜上的高;则 .若在中, , ,根据上述公式,可以推出该三角形外接圆的半径为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为:(为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.
(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)设点P的直角坐标为,若直线l与曲线C分别相交于A,B两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为六个小组(所调查的居民平均每天运动时长均在内),得到的频率分布直方图如图所示.
(1)求出图中的值,并估计这名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);
(2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在时间段内应抽出多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知拋物线C:经过点,其焦点为F,M为抛物线上除了原点外的任一点,过M的直线l与x轴、y轴分别交于A,B两点.
Ⅰ求抛物线C的方程以及焦点坐标;
Ⅱ若与的面积相等,证明直线l与抛物线C相切.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com