精英家教网 > 高中数学 > 题目详情
函数y=f(x)在区间(0,+∞)内可导,导函数f'(x)是减函数,且f′(x)>0。设x0∈(0,+∞),y=kx+m是曲线y=f(x)在点(x0,f(x0))的切线方程,并设函数g(x)=kx+m。
(1)用x0、f(x0)、f′(x0)表示m;
(2)证明:当x0∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥上恒成立,其中a、b为实数,求b的取值范围及a与b所满足的关系。
解:(1)
(2)令

因为递减,
所以递增,
因此,当时,
时,
所以是h(x)唯一的极值点,且是极小值点,
可知h(x)的最小值为0,
因此

(3)是不等式成立的必要条件,以下讨论设此条件成立
,即对任意成立的充要条件是

另一方面,由于满足前述题设中关于函数的条件,
利用(2)的结果可知,的充要条件是:过点(0,b)与曲线相切的直线的斜率大于,该切线的方程为
于是的充要条件是
综上,不等式对任意成立的充要条件是
 ①
显然,存在a、b使①式成立的充要条件是:不等式 ②有解
解不等式②得
因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•花都区模拟)已知函数y=f(x)在定义域[-4,6]内可导,其图象如图,记y=f(x)的导函数为y=f′(x),则不等式f′(x)≥0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区一模)已知关于x的二次函数f(x)=ax2-4bx+1,其中a,b满足
a+b-6≤0
a>0
b>0
则函数y=f(x)在区间[1,+∞)上是增函数的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青浦区一模)我们把定义在R上,且满足f(x+T)=af(x)(其中常数a,T满足a≠1,a≠0,T≠0)的函数叫做似周期函数.
(1)若某个似周期函数y=f(x)满足T=1且图象关于直线x=1对称.求证:函数f(x)是偶函数;
(2)当T=1,a=2时,某个似周期函数在0≤x<1时的解析式为f(x)=x(1-x),求函数y=f(x),x∈[n,n+1),n∈Z的解析式;
(3)对于确定的T>0且0<x≤T时,f(x)=3x,试研究似周期函数函数y=f(x)在区间(0,+∞)上是否可能是单调函数?若可能,求出a的取值范围;若不可能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•花都区模拟)已知函数y-f(x)在定义域[-4,6]内可导,其导函数y=f′(x)的图象如图,则函数y=f(x)的单调递增区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•奉贤区一模)函数y=f(x),x∈R满足f(x+1)=af(x),a是不为0的常数,当0≤x≤1时,f(x)=x(1-x),
(1)若函数y=f(x),x∈R是周期函数,写出符合条件a的值;
(2)求n≤x≤n+1(n≥0,n∈Z)时,求y=f(x)的表达式y=fn(x);
(3)若函数y=f(x)在[0,+∞)上的值域是闭区间,求a的取值范围.

查看答案和解析>>

同步练习册答案