精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程是为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)写出的极坐标方程和的直角坐标方程;

(2)已知点的极坐标分别为,直线与曲线相交于两点,射线与曲线相交于点,射线与曲线相交于点,求的值.

【答案】(1)线的普通方程为,曲线的直角坐标方程为;(2).

【解析】

试题(1)(1)利用cos2θ+sin2θ=1,即可曲线C1的参数方程化为普通方程,进而利用即可化为极坐标方程,同理可得曲线C2的直角坐标方程;
(2)的圆心,得,设代入中即可得解.

试题解析:

(1)曲线的普通方程为,化成极坐标方程为

曲线的直角坐标方程为

(2)在直角坐标系下,

恰好过的圆心,
是椭圆上的两点,

在极坐标下,设分别代入中,

,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)当,求曲线在点处的切线方程;

2)若函数在区间上的最小值为,求实数的值;

3)当时,若函数恰有两个零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求的解析式;

(2)判断方程内的解的个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数(其中.

1)判断函数的奇偶性,并说明理由;

2)求函数的反函数

3)若两个函数在区间上恒满足,则函数在闭区间上是分离的.试判断的反函数在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)

(Ⅰ)求证:数列{an-1}是等比数列;

(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果对任意n∈N*,都有bn+t≤t2,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过正方体的顶点作平面,使每条棱在平面的正投影的长度都相等,则这样的平面可以作(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:

空调类

冰箱类

小家电类

其它类

营业收入占比

90.10%

4.98%

3.82%

1.10%

净利润占比

95.80%

3.82%

0.86%

则下列判断中不正确的是(

A.该公司2018年度冰箱类电器销售亏损

B.该公司2018年度小家电类电器营业收入和净利润相同

C.该公司2018年度净利润主要由空调类电器销售提供

D.剔除冰箱类销售数据后,该公司2018年度空调类电器销售净利润占比将会降低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为θ为参数),以原点为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为

1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;

2)若直线lykx与曲线C1、曲线C2在第一象限交于PQ,且|OQ||PQ|,点M的直角坐标为(10),求△PMQ的面积.

查看答案和解析>>

同步练习册答案