精英家教网 > 高中数学 > 题目详情
计算:3
-log
4
9
+log63•log278+log63.
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数恒等式、换底公式、对数的运算性质即可得出.
解答: 解:原式=3-log32+
lg3
lg6
3lg2
3lg3
+1-log62

=
1
2
+log62+1-log62
=
3
2
点评:本题考查了对数恒等式、换底公式、对数的运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x,x≤0
log2x,0<x≤2
2x-2,x>2
,则f(
2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要从编号为01~50的50枚最新研制的某型号导弹中随机抽出5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定,在选取的5枚导弹的编号可能是(  )
A、05,10,15,20,25
B、03,13,23,33,43
C、01,02,03,04,05
D、02,04,08,16,32

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a3+a7-a10=0,a11-a4=4,记Sn=a1+a2+…+an,则S13=(  )
A、52B、56C、68D、78

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-2x,则f(a+2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在定义域上既是奇函数又存在零点的函数是(  )
A、y=cosx
B、y=
1
x
C、y=lgx
D、y=ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:

求使函数f(x)=
x2-2x+3
+
1
3-|x|
有意义的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn.若
1
2
an+1
an
 
≤2(n∈N*),则称{an}是“紧密数列”
(1)若数列{an}的前n项和Sn=
1
4
(n2+3n)(n∈N*),证明:{an}是“紧密数列”;
(2)设数列{an}是公比为q的等比数列,若数列{an}与{Sn}都是“紧密数列”,求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

刘徽是我国古代最伟大的数学家之一,他的(  )是极限思想的开始,他计算体积的思想是积分学的萌芽.
A、割圆术B、勾股定理
C、大衍求一术D、辗转相除法

查看答案和解析>>

同步练习册答案