【题目】已知函数.
(Ⅰ)求不等式;
(Ⅱ)若函数的最小值为,且,求的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)|2x﹣1|<4,即﹣4<2x﹣1<4解不等式求得解集(2)g(x)=f(x)+f(x﹣1)=|2x﹣1|+|2(x﹣1)﹣1|=|2x﹣1|+|2x﹣3|≥|(2x﹣1)﹣(2x﹣3)|=2,
故g(x)的最小值为a=2,∵m+n=a=2(m>0,n>0),则
=根据基本不等式即求得取值范围.
试题解析:
解:(1)不等式f(x)<4,即|2x﹣1|<4,即﹣4<2x﹣1<4,求得﹣<x<,故不等式的解集为{x|﹣<x<}.
(2)若函数g(x)=f(x)+f(x﹣1)=|2x﹣1|+|2(x﹣1)﹣1|=|2x﹣1|+|2x﹣3|≥|(2x﹣1)﹣(2x﹣3)|=2,
故g(x)的最小值为a=2, ∵m+n=a=2(m>0,n>0),则
=≥+2=+,故求+的取值范围为[+,+∞).
科目:高中数学 来源: 题型:
【题目】在一个不透明的箱子里装有5个完全相同的小球,球上分别标有数字1、2、3、4、5.甲先从箱子中摸出一个小球,记下球上所标数字后,将该小球放回箱子中摇匀后,乙再从该箱子中摸出一个小球.
(1)若甲、乙两人谁摸出的球上标的数字大谁就获胜(数字相同为平局),求甲获胜的概率;
(2)规定:两人摸到的球上所标数字之和小于6,则甲获胜,否则乙获胜,这样规定公平吗?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且离心率.
(Ⅰ)求椭圆的方程.
(Ⅱ)若椭圆上存在点、关于直线对称,求的所有取值构成的集合,并证明对于, 的中点恒在一条定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C1的参数方程为 (α为参数),以原点O为极点,x轴的正半轴为级轴,建立极坐标系,曲线C2的极坐标方程;
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上的动点,求点P到曲线C2上的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:只要,必有,则称具有性质.
(1)若具有性质,且, ,求;
(2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列, , , 判断是否具有性质,并说明理由;
(3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,点M的坐标为,曲线C的方程为;以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为的直线l经过点M.
(I)求直线l和曲线C的直角坐标方程:
(II)若P为曲线C上任意一点,直线l和曲线C相交于A,B两点,求△PAB面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com