精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图像如图所示,则下列结论中一定成立的是(  )

A. 函数f(x)有极大值f(2)和极小值f(1) B. 函数f(x)有极大值f(-2)和极小值f(1)

C. 函数f(x)有极大值f(2)和极小值f(-2) D. 函数f(x)有极大值f(-2)和极小值f(2)

【答案】D

【解析】试题分析:利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.

解:由函数的图象可知,f′﹣2=0f′2=0,并且当x﹣2时,f′x)>0,当﹣2x1f′x)<0,函数fx)有极大值f﹣2).

又当1x2时,f′x)<0,当x2时,f′x)>0,故函数fx)有极小值f2).

故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列的前项和记为 ,点在直线上,

(1)求数列的通项公式;

(2)设 是数列的前项和,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是数列的前项和,并且对任意正整数 .

1)证明:数列是等比数列,并求的通项公式;

(2)设求证:数列不可能为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆)上仅有个点到直线的距离为,则实数的取值范围是( )

A. B. C. D.

【答案】B

【解析】圆心到直线距离为 所以要有个点到直线的距离为,需 ,选B.

点睛:与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.

型】单选题
束】
15

【题目】为双曲线的两个焦点,若是正三角形的三个顶点,则双曲线的渐近线方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,由直三棱柱和四棱锥构成的几何体中, ,平面平面

Ⅰ)求证:

Ⅱ)在线段上是否存在点,使直线与平面所成的角为?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的左、右焦点分别为 为椭圆上任一点,且的最大值的取值范围是,其中,则椭圆的离心率的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形的边长为,点分别在边上, 的交点为 ,现将沿线段折起到位置,使得

(1)求证:平面平面

(2)求五棱锥的体积;

(3)在线段上是否存在一点,使得平面?若存在,求;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C 的一个顶点与抛物线的焦点重合, 分别是椭圆的左、右焦点,且离心率,过椭圆右焦点的直线l与椭圆C交于两点.

(1)求椭圆C的方程;

(2),求直线l的方程;

(3)是椭圆C经过原点O的弦, ,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

Ⅰ)讨论函数的单调性;

Ⅱ)若函数x=2处的切线斜率为,不等式对任意恒成立,求实数的取值范围;

查看答案和解析>>

同步练习册答案