精英家教网 > 高中数学 > 题目详情
精英家教网如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=2.
(1)证明:AB1⊥BC1
(2)求点B到平面AB1C1的距离;
(3)求二面角C1-AB1-A1的大小.
分析:(1)以C点为坐标原点,CA,CB,CC1为X,Y,Z轴正方向建立空间坐标系,分别求出AB1与BC1的方向向量,代入数量积公式,得到其数量积为0,即可得到AB1⊥BC1
(2)求出平面AB1C1的一个法向量,则AB的方向向量,代入到公式d=
|
AB
n1
|
|
n1
|
,即可求出
点B到平面AB1C1的距离;
(3)结合(2)的结合,再求出平面AB1A1的一个法向量,代入向量夹角公式,即可得到二面角C1-AB1-A1的大小.
解答:精英家教网证明:(1)如图建立直角坐标系,其为C为坐标原点,
题意A(2,0,0),B(0,2,0),A1(2,0,2),B1(0,2,2),C1(0,0,2).
AB1
BC1
=(-2,2,2)•(0,-2,2)=0
,∴
AB1
BC1
∴AB1⊥BC1
解:(2)设
n1
=(x1y1z1)是平面AB1C1
的一个法向量,
n1
AB1
=0,
n1
AC1
=0
-x1+y1+z1=0
-x1+z1=0
所以
y1=0
x1=z1.

z1=1,
n1
=(1,0,1)

AB
=(-2,2,0)
,∴点B到平面AB1C1的距离d=
|
AB
n1
|
|
n1
|
=
2

(3)解设
n2
=(x2y2z2)
是平面A1AB1的一个法向量
n2
AB
=0,
n2
AA1
=0,得
-x2+y2=0
z2=0.

x2=y2
z2=0.
y2=1,则
n2
=(1,1,0)

cos<
n1
n2
>=
n1
n2
|
n1
||
n2
|
=
1
2

∴二面角C1-AB-A1的大小为60°.
点评:本题考查的知识点是二面角的平面角及求法,点到面的距离,异面直线的夹角,其中建立适当的空间坐标系,将问题转化为向量夹角及向量长度问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案