精英家教网 > 高中数学 > 题目详情
11.设数列{an}的前n项和为Sn,且nSn+(n+2)an=4n,则Sn=4-$\frac{n+2}{{2}^{n-1}}$.

分析 nSn+(n+2)an=4n,可得Sn+$(1+\frac{2}{n})$an=4,当n=1时,解得a1=1.当n≥2时,Sn-1+$(1+\frac{2}{n-1}){a}_{n-1}$=4,可得:$2(1+\frac{1}{n})$an=$\frac{n+1}{n-1}{a}_{n-1}$,即$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{2(n-1)}$,利用“累乘求积”可得an,代入nSn+(n+2)an=4n,即可得出.

解答 解:∵nSn+(n+2)an=4n,
∴Sn+$(1+\frac{2}{n})$an=4,
∴当n=1时,a1+3a1=4,解得a1=1.
当n≥2时,Sn-1+$(1+\frac{2}{n-1}){a}_{n-1}$=4,
化为:$2(1+\frac{1}{n})$an=$\frac{n+1}{n-1}{a}_{n-1}$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{2(n-1)}$,
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$•a1
=$\frac{1}{{2}^{n-1}}$$•\frac{n}{n-1}•\frac{n-1}{n-2}$•…•$\frac{2}{1}$×1
=$\frac{n}{{2}^{n-1}}$.
代入nSn+(n+2)an=4n,
∴nSn+$\frac{n(n+2)}{{2}^{n-1}}$=4n,
∴Sn=4-$\frac{n+2}{{2}^{n-1}}$.
故答案为:4-$\frac{n+2}{{2}^{n-1}}$.

点评 本题考查了递推关系的应用、“累乘求积”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.经过点M(4,-1),且与直线y=2垂直的直线方程是x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“t>1”是“$\frac{1}{t}<t$”成立的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|x2-3x+2≤0},函数f(x)=x2-2ax+1.
(1)当a≠0时,解关于x的不等式f(x)≤3a2+1;
(2)若命题“存在x0∈A,使得f(x0)≤A”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.锐角△ABC中,角A,B,C的对边分别是a,b,c,若tanC=2,则$\frac{sinA}{sinB}$的取值范围是$(0,\sqrt{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设O是△ABC三边中垂线的交点,a,b,c分别是角A,B,C的对边,已知b2-2b+c2=O,求$\overrightarrow{AO}$•$\overrightarrow{BC}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.α是第四象限角,则下列数值中一定是正值的是 (  )
A.sinαB.cosαC.tanαD.cotα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若a=log43,则2a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A,B,C,D,E是球面上的五个点,其中A,B,C,D在同一圆周上,若E不在A,B,C,D所在的圆周上,则从这五个点的任意两点的连线中取出2条,这两条直线是异面直线的概率是 (  )
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{2}{15}$D.$\frac{4}{15}$

查看答案和解析>>

同步练习册答案