精英家教网 > 高中数学 > 题目详情

【题目】已知函数=

(1)写出该函数的单调区间;

(2)若函数=-m恰有3个不同零点,求实数m的取值范围;

(3)若n2-2bn+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数n的取值范围.

【答案】(1) f(x)的单调递减区间是(0,1),单调递增区间是(-∞,0)及(1,+∞) (2) 实数m的取值范围为 (3) n的取值范围是(-∞,-2]∪{0}∪[2,+∞)

【解析】

(1)x≤0的图象部分可由图象变换作出;x>0的部分为抛物线的一部分.
(2)数形结合法:转化为直线y=m与函数f(x)的图象有三个交点.
(3)将f(x)≤n2-2bn+1对所有x∈[-1,1]恒成立,转化为[f(x)]max≤n2-2bn+1即n2-2bn≥0在b∈[-1,1]恒成立,从而建立关于n的不等关系,求出n的取值范围.

(1)函数f(x)的图象如图所示,

则函数f(x)的单调递减区间是(0,1),单调递增区间是(-∞,0)及(1,+∞)

(2)作出直线y=m,函数g(x)=f(x)-m恰有3个不同零点等价于直线y=m与函数f(x)的图象恰有三个不同交点.

根据函数f(x)=的图象,

f(0)=1,f(1)=,

∴m.

故实数m的取值范围为

(3)∵f(x)≤n2-2bn+1对所有x∈[-1,1]恒成立,

[f(x)]maxn2-2bn+1,

又[f(x)]max=f(0)=1,

∴n2-2bn+1≥1,即n2-2bn≥0在b∈[-1,1]上恒成立.h(b)=-2nb+n2,

∴h(b)=-2nb+n2b∈[-1,1]上恒大于等于0.

解得n≥0或n-2.

同理由n≤0或n≥2.

∴n∈(-∞,-2]∪{0}∪[2,+∞).

n的取值范围是(-∞,-2]∪{0}∪[2,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线过焦点交抛物线于两点, ,点的纵坐标为.

(Ⅰ)求抛物线的方程;

(Ⅱ)若点是抛物线位于曲线 (为坐标原点)上一点,求的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,直角梯形ABCD中,∠ABC=90°,AB=BC=2AD=4,点E、F分别是AB、CD的中点,点G在EF上,沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF,如图2.

(1)当AG+GC最小时,求证:BD⊥CG;
(2)当2VBADGE=VDGBCF时,求二面角D﹣BG﹣C平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面 为线段的中点, 为线段上的动点.

)求证:

)当点满足时,求证:直线平面

)当点是线段中点时,求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面,四边形为正方形,且, 为线段的中点.

(Ⅰ)求证: 平面;

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=x3cos3(x+ ),下列说法正确的是(
A.f(x)是奇函数且在(﹣ )上递增
B.f(x)是奇函数且在(﹣ )上递减
C.f(x)是偶函数且在(0, )上递增
D.f(x)是偶函数且在(0, )上递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,f (x)=sin(2x﹣A) (x∈R),函数f(x)的图象关于点( ,0)对称.
(1)当x∈(0, )时,求f (x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当 时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是平行四边形, , , 平面.

(1)为棱的中点,求证: 平面

(2)求证: 平面平面

(3)若, ,求四棱锥的体积.

查看答案和解析>>

同步练习册答案