【题目】如图,四棱锥中,平面平面,若,四边形是平行四边形,且.
(1)求证:四边形是菱形;
(2)若点在线段上,且平面,,,求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】已知函数为定义域R上的奇函数,且在R上是单调递增函数,函数,数列为等差数列,且公差不为0,若,则( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,21时29分食甚,22时07分生光,23时11分复圆.月全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”在食既时刻开始,生光时刻结束.小明准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设曲线交于点,曲线与轴交于点,求线段的中点到点的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=3sin(﹣3x)﹣2的图象向右平移个单位长度得到函数g(x)的图象,若g(x)在区间[,θ]上的最大值为1,则θ的最小值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:()的焦点为,为上一动点,点,以线段为直径作.当过时,的面积为3.
(1)求的方程;
(2)是否存在垂直于轴的直线,使得被所截得的弦长为定值?若存在,求的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com