精英家教网 > 高中数学 > 题目详情
18.如图所示,三棱柱OAD-EBC,其中A,C,B,D,E均为以O为球心,半径为4的半球面上,EF为直径,侧面ABCD为边长等于4的正方形,则三棱柱OAD-EBC的高为(  )
A.$\frac{8\sqrt{6}}{3}$B.$\frac{4\sqrt{6}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

分析 连结OB,OC,判断O-ABCD的形状,求出VO-ABD,利用三棱锥的体积公式建立方程,求出结果.

解答 解:连结OB,OC,由题意可知O-ABCD是棱长为4的四棱锥,O到底面ABCD的距离为h=$\sqrt{{4}^{2}-(2\sqrt{2})^{2}}$=2$\sqrt{2}$.O到AD的距离为$\sqrt{8+4}$=2$\sqrt{3}$
VO-ABD=$\frac{1}{3}$S△ABD•h=$\frac{1}{3}$×$\frac{1}{2}$×4×4×2$\sqrt{2}$=$\frac{16\sqrt{2}}{3}$.
三棱柱OAD-EBC的高为h′,则$\frac{1}{3}×\frac{1}{2}×4×2\sqrt{3}×h′$=$\frac{16\sqrt{2}}{3}$,
∴h′=$\frac{4\sqrt{6}}{3}$.
故选:B.

点评 本题考查球与内接几何体的关系,三棱锥的体积的求法以及关系的应用,考查转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=-4x.
(Ⅰ)已知点M在抛物线C上,它与焦点的距离等于5,求点M的坐标;
(Ⅱ)直线l过定点P(1,2),斜率为k,当k为何值时,直线l与抛物线:只有一个公共点;两个公共点;没有公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若A=60°,b=8,S△ABC=12$\sqrt{3}$,则a=2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知P为抛物线y2=4x上任意一点,抛物线的焦点为F,点A(2,1)是平面内一点,则|PA|+|PF|的最小值为(  )
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=$\left\{\begin{array}{l}{e^x}+ax,x>0\\ \frac{1}{e^x}-ax,x<0\end{array}$,若函数f(x)有四个零点,则实数a的取值范围是(  )
A.$({-∞,-\frac{1}{e}})$B.(-∞,-e)C.(e,+∞)D.$({\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C所对的边分别为a,b,c满足a≠b,2sin(A-B)=asinA-bsinB
(Ⅰ)求边c
(Ⅱ)若△ABC的面积为1,且tanC=2,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设Sn为等比数列{an}的前n项和,若8a2+a5=0,则$\frac{{S}_{5}}{{S}_{2}}$等于(  )
A.$\frac{11}{3}$B.5C.-8D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y=4x2的焦点到准线的距离为(  )
A.2B.$\frac{1}{8}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是(  )
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{11}{21}$D.$\frac{10}{21}$

查看答案和解析>>

同步练习册答案