精英家教网 > 高中数学 > 题目详情

【题目】如图,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA=2.
(1)求证:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值为 ,求斜三棱柱ABC﹣A1B1C1的高.

【答案】
(1)解:取BC中点M,连接B1M,则B1M⊥平面ACB,

∴B1M⊥AC

又AC⊥BC,且B1M∩BC=M,∴AC⊥平面B1C1CB

因为AC平面ACC1A1,所以平面ACC1A1⊥平面B1C1CB


(2)解:

以CA为ox轴,CB为oy轴,过点C与面ABC垂直方向为oz轴,

建立空间直角坐标系CA=BC=2,设B1M=t,则A(2,0,0),

B(0,2,0),M(0,1,0),B1(0,1,t),C1(0,﹣1,t)

设面AB1B法向量

同理面AB1C1法向量

因为二面角B﹣AB1﹣C1的余弦值为

∴t4+29t2﹣96=0

∴t2=3,

所以斜三棱柱的高为


【解析】(1)取BC中点M,连接B1M,证明B1M⊥AC,AC⊥BC,AC⊥平面B1C1CB,然后证明平面ACC1A1⊥平面B1C1CB;(2)以CA为ox轴,CB为oy轴,过点C与面ABC垂直方向为oz轴,建立空间直角坐标系,设B1M=t,求出相关点的坐标,求出平面AB1B法向量,平面AB1C1法向量,利用二面角B﹣AB1﹣C1的余弦值为 , 转化求解斜三棱柱的高即可.
【考点精析】解答此题的关键在于理解平面与平面垂直的判定的相关知识,掌握一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,a2=3,若|an+1﹣an|=2n(n∈N*),且{a2n1}是递增数列、{a2n}是递减数列,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1、F2为双曲线C:x2 =1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2 , 求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图程序框图,如果输入的a=4,b=6,那么输出的n=(  )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥的表面积是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的底面是锐角三角形,则存在过点A的平面(

A.与直线BC和直线A1B1都平行
B.与直线BC和直线A1B1都垂直
C.与直线BC平行且直线A1B1垂直
D.与直线BC和直线A1B1所成角相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b的定义域为[0,1].
(1)当a=1时,函数f(x)在定义域内有两个不同的零点,求b的取值范围;
(2)设f(x)的最大值和最小值分别为M和m,求证:M+m>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是奇函数,当x<0,f(x)=﹣x2+x,若不等式f(x)﹣x≤2logax(a>0且a≠1)对x∈(0, ]恒成立,则实数a的取值范围是(
A.(0, ]
B.[ ,1)
C.(0, ]
D.[ ]∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+bx2+cx+d的图象如图,则函数g(x)=log (x2+ bx+ )的单调递增区间为(

A.[﹣2,+∞)
B.(﹣∞,﹣2)
C.(3,+∞)
D.[3,+∞)

查看答案和解析>>

同步练习册答案