精英家教网 > 高中数学 > 题目详情

【题目】如图,甲船从A处以每小时30海里的速度沿正北方向航行,乙船在B处沿固定方向匀速航行,B在A北偏西105°方向用与B相距10 海里处.当甲船航行20分钟到达C处时,乙船航行到甲船的北偏西120°方向的D处,此时两船相距10海里.

(1)求乙船每小时航行多少海里?
(2)在C的北偏西30°方向且与C相距 海里处有一个暗礁E,周围 海里范围内为航行危险区域.问:甲、乙两船按原航向和速度航行有无危险?若有危险,则从有危险开始,经过多少小时后能脱离危险?若无危险,请说明理由.

【答案】
(1)解:如图,连接AD,CD,由题意CD=10,AC= =10,∠ACD=60°

∴△ACD是等边三角形,

∴AD=10,

∵∠DAB=45°

△ABD中,BD= =10,

∴v=10×3=30海里.

答:乙船每小时航行30海里.


(2)解:建立如图所示的坐标系,危险区域在以E为圆心,r= 的圆内,直线BD的方程为y= x,∠DAB=∠DBA=45°

E的坐标为(ABcos15°﹣CEsin30°,ABsin15°+CEcos30°+AC),

求得A(5 +5,5 ﹣5),C(5 +5,5 +5),E(5+ ,9+5 ),

E到直线BD的距离d1= =1< ,故乙船有危险;

点E到直线AC的距离d2= ,故甲船没有危险.

以E为圆心,半径为 的圆截直线BD所得的弦长分别为l=2 =2,

乙船遭遇危险持续时间为t= = (小时),

答:甲船没有危险,乙船有危险,且在遭遇危险持续时间 小时后能脱离危险.


【解析】(1)连接AD,CD,推断出△ACD是等边三角形,在△ABD中,利用余弦定理求得BD的值,进而求得乙船的速度.(2)建立如图所示的坐标系,危险区域在以E为圆心,r= 的圆内,求出E到直线BD的距离,与半径比较,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

(1)求的轨迹

(2)过轨迹上任意一点作圆的切线,设直线的斜率分别是,试问在三个斜率都存在且不为0的条件下, 是否是定值,请说明理由,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c, =( ,1), =(sinA,cosA), 的夹角为60°. (Ⅰ)求角A的大小;
(Ⅱ)若sin(B﹣C)=2cosBsinC,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(x+ )+cosx,x∈R,
(1)求函数f(x)的最大值,并写出当f(x)取得最大值时x的取值集合;
(2)若α∈(0, ),f(α+ )= ,求f(2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥

B. 有两个面平行且相似,其余各面都是梯形的多面体是棱台

C. 如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥

D. 有两个相邻侧面是矩形的棱柱是直棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,且a3=﹣6,a6=0.
(1)求{an}的通项公式.
(2)若等比数列{bn}满足b1=8,b2=a1+a2+a3 , 求{bn}的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与曲线的公共点的横坐标之和为3,求的值;

(2)当时,对任意,使恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.

(1)求证:AF∥平面PCE;
(2)求三棱锥C﹣BEP的体积.

查看答案和解析>>

同步练习册答案