精英家教网 > 高中数学 > 题目详情

已知函数的导函数是处取得极值,且

(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有
成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最
小值,据此判断的大小关系,并说明理由.

(Ⅰ)的极大值和极小值分别为4和0 (Ⅱ)
(Ⅲ)

解析试题分析:(I)依题意,,解得
由已知可设,因为,所以
,导函数
列表:



1
(1,3)
3
(3,+∞)

+
0
-
0
+

递增
极大值4
递减
极小值0
递增
由上表可知处取得极大值为
处取得极小值为
(Ⅱ)①当时,由(I)知上递增,
所以的最大值
对任意的恒成立,得,则
因为,所以,则
因此的取值范围是
②当时,因为,所以
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3-12x+5,x∈R.
(1)求函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(Ⅰ)当=1时,求在(1,)的切线方程
(Ⅱ)当时,,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小值;
(2)设,讨论函数的单调性;
(3)斜率为的直线与曲线交于,两点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中常数
(1)求的单调区间;
(2)如果函数在公共定义域D上,满足,那么就称 为的“和谐函数”.设,求证:当时,在区间上,函数的“和谐函数”有无穷多个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算由曲线,直线x+y=3以及两坐标轴所围成的图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 在区间[-2,2]的最大值为20,求它在该区间的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的解析式及减区间;
(2)若的最小值。

查看答案和解析>>

同步练习册答案