精英家教网 > 高中数学 > 题目详情
已知数列{an}的各项均为正整数,对于任意n∈N*,都有2+
1
an+1
1
an
+
1
an+1
1
n
-
1
n+1
<2+
1
an
成立,且a2=4.
(1)求a1,a3的值;
(2)猜想数列{an}的通项公式,并给出证明.
考点:数学归纳法
专题:点列、递归数列与数学归纳法
分析:(1)直接利用已知条件,通过n=1,直接求a1,n=2,求解a3的值;
(2)通过数列的前3项,猜想数列{an}的通项公式,然后利用数学归纳法的证明步骤证明猜想即可.
解答: 解:(1)因为2+
1
an+1
1
an
+
1
an+1
1
n
-
1
n+1
<2+
1
an
,a2=4
当n=1时,由2+
1
a2
<2(
1
a1
+
1
a2
)<2+
1
a1
,即有2+
1
4
2
a1
+
2
4
<2+
1
a1

解得
2
3
a1
8
7
.因为a1为正整数,故a1=1.  …(2分)
当n=2时,由2+
1
a3
<6(
1
4
+
1
a3
)<2+
1
4

解得8<a3<10,所以a3=9.  …(4分)
(2)由a1=1,a2=4,a3=9,猜想:an=n2…(5分)
下面用数学归纳法证明.
1°当n=1,2,3时,由(1)知an=n2均成立.…(6分)
2°假设n=k(k≥3)成立,则ak=k2
由条件得2+
1
ak+1
<k(k+1)(
1
k2
+
1
ak+1
)<2+
1
k2

所以
k3(k+1)
k2-k+1
ak+1
k(k2+k-1)
k-1
,…(8分)
所以(k+1)2-
k+1
k2-k+1
ak+1<(k+1)2+
1
k-1
    …(9分)
因为k≥3,0<
k+1
k2-k+1
<1
0<
1
k-1
<1

ak+1N*,所以ak+1=(k+1)2
即n=k+1时,an=n2也成立.
由1°,2°知,对任意n∈N*an=n2.  …(10分)
点评:本题考查递推数列的应用,数学归纳法的应用,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(log2x)2+4log2x+m,x∈[
1
8
,4],m为常数.
(Ⅰ)设函数f(x)存在大于1的零点,求实数m的取值范围;
(Ⅱ)设函数f(x)有两个互异的零点α,β,求m的取值范围,并求α•β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
(a+1)x-1(x≥1)
1
2
ax2-ax-1(x<1)
在(-∞,+∞)上单调递增,则实数a的取值范围是(  )
A、(-
2
3
,0)
B、(-1,0)
C、[-
2
3
,0)
D、[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知约束条件
x-2y+1≤0
ax-y≥0
x≤1
表示的平面区域为D,若区域D内至少有一个点在函数y=ex的图象上,那么实数a的取值范围为(  )
A、[e,4)
B、[e,+∞)
C、[1,3)
D、[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,假命题是(  )
A、?x∈R,3x-2>0
B、?x0∈R,tanx0=2
C、?x0∈R,log2x0<2
D、?x∈N*,(x-2)2>0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+mx+n,对任意实数x都有f(2-x)=f(2+x)成立,试比较f(-1),f(2),f(4)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+2|sinx|-k,x∈[0,2π]有且仅有两个零点,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a与b的等差中项为
1
2
,则下列命题正确的是
 
(写出所有正确命题的编号).
①ab≤
1
4

②a2+b2
1
2

③a4+b4≤1;
④若a>0,b>0,则b+2a≥4
2
ab;
⑤若a≥-
1
2
,b≥-
1
2
,则
2a+1
+
2b+1
≤2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设偶函数f(x)的定义域为R,f(x)在区间(-∞,0]上为增函数,则f(-2),f(π),f(3)的大小关系是(  )
A、f(π)>f(-2)>f(3)
B、f(π)>f(3)>f(-2)
C、f(π)<f(-2)<f(3)
D、f(π)<f(3)<f(-2)

查看答案和解析>>

同步练习册答案