分析 (Ⅰ)由已知求出等比数列的公比,代入通项公式得答案;
(Ⅱ)把数列{an}的通项公式代入bn=log2a1+log2a2+…+log2an,求出bn,然后由裂项相消法求$\left\{{\frac{1}{b_n}}\right\}$的前n项和.
解答 解:(Ⅰ)设数列{an}的公比为q,由${{a}_{3}}^{2}=4{a}_{2}{a}_{6}$,得${{a}_{3}}^{2}=4{{a}_{4}}^{2}$,
∴${q}^{2}=\frac{1}{4}$,由条件可知,q>0,∴q=$\frac{1}{2}$.
∵${a}_{1}=\frac{1}{2}$,∴${a}_{n}=\frac{1}{{2}^{n}}$;
(Ⅱ)bn=log2a1+log2a2+…+log2an
=-(1+2+…+n)=-$\frac{n(n+1)}{2}$.
故$\frac{1}{{b}_{n}}=-\frac{2}{n(n+1)}=-2(\frac{1}{n}-\frac{1}{n+1})$,
∴$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+…+\frac{1}{{b}_{n}}=-2[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})]$
=$-\frac{2n}{n+1}$.
∴数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和为$-\frac{2n}{n+1}$.
点评 本题考查等比数列的通项公式,考查了裂项相消法求数列的和,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
睡眠时间(小时) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9) |
人数 | 1 | 5 | 6 | 5 | 3 |
睡眠时间(小时) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9) |
人数 | 2 | 4 | 8 | 4 | 2 |
睡眠时间少于7小时 | 睡眠时间不少于7小时 | 合计 | |
男生 | |||
女生 | |||
合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 0 | C. | 2 | D. | 不存在 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com