精英家教网 > 高中数学 > 题目详情

【题目】已知函数为实数).

(1)当求函数的图象在点处的切线方程

(2)设函数(其中为常数),若函数在区间上不存在极值且存在满足的取值范围

(3)已知求证

【答案】(1)(2)(3)详见解析

【解析】

试题分析:(1)由导数几何意义得,先求导数,代入得切线斜率为2,因为,所以根据点斜式可得切线方程(2)不存在极值,即函数导数不变号,先求函数导数,因此,存在性问题,转化为对应函数最值:即由存在满足,得,结合二次函数最值求法,即对称轴与对应区间位置关系分类讨论:,再分别求解对应不等式,得的取值范围;(3)利用导数证明不等式,关键在于构造恰当的函数,可利用导数得,因此有不等式,令,则,最后根据叠加法可证不等式

试题解析:(1)当

函数的图象在点处的切线方程为:

(2)解得

由于函数在区间上不存在极值所以

由于存在满足所以

对于函数对称轴

结合可得

结合可知不存在

结合可知

综上可知,的取值范围是

(3)证明:当

单调递增

单调递减

处取得最大值

,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,左、右顶点分别为是椭圆上一点,记直线的斜率为,且有.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,以为直径的圆经过原点,且线段的垂直平分线在轴上的截距为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,点为坐标原点,若椭圆与曲线的交点分别为上),且两点满足

1)求椭圆的标准方程;

2)过椭圆上异于其顶点的任一点,作的两条切线,切点分别为,且直线轴、轴上的截距分别为,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆及点

(1)若直线平行于,与圆相交于两点,,求直线的方程;

(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品和产品需要甲、乙两种新型材料,生产一件产品需要甲材料1.5,乙材料1,用5个工时,生产一件产品需要甲材料0.5,乙材料0.3,用3个工时,生产一件产品的利润为2100元,生产一件产品的利润为900元.该企业现有甲材料150,乙材料90,则在不超过600个工时的条件下,生产产品的利润之和的最大值为____________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,公差,且成等比数列.

(1)求数列的通项公式;

(2)设是首项为1,公比为3的等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆台中,是下底面圆的直径是上底面圆的直径是圆台的一条母线

(1)已知分别为的中点求证平面

(2)已知求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示中的最大值,如.已知函数.

(1)设,求函数上零点的个数;

(2)试探究是否存在实数,使得恒成立?若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,平面平面.设分别为中点.

(1)求证:平面

(2)求证:平面

(3)试问在线段上是否存在点,使得过三点的平面内的任一条直线都与平面平行?

若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案