【题目】设函数,其中.函数的图像在点处的切线与函数的图像在点处的切线互相垂直.
(Ⅰ)求的值;
(Ⅱ)若在上恒成立,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ)
【解析】
(Ⅰ)求f(x)的导函数,代入g(x),对函数g(x)求导,结合函数f(x)的图象在点A处的切线与g(x)的图象在点B处的切线互相垂直列式求t值;(Ⅱ)设函数F(x)=kg(x)﹣2f(x)=2kex(x+1)﹣2x2﹣8x﹣4,(x≥﹣2),求其导函数,分类求得函数最小值,可得k的取值范围.
(Ⅰ)由得,.
于是,所以.
函数的图象在点处的切线与函数的图象在点处的切线互相垂直,所以,即
(Ⅱ),.
设函数=(),
则=.
由题设可知,即.令 得 , .
(1)若,则,此时,,,
,即在单调递减,在单调递增,所以在取
最小值.
而
当时,,即恒成立.
②若则,此时
在单调递增,而 ,
当时,,即恒成立.
③若则,此时 .
当时, 不能恒成立.
综上所述,的取值范围是
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,椭圆C:(a>b>0)离心率为,其短轴长为2.
(1)求椭圆C的标准方程;
(2)如图,A为椭圆C的左顶点,P,Q为椭圆C上两动点,直线PO交AQ于E,直线QO交AP于D,直线OP与直线OQ的斜率分别为k1,k2,且k1k2=,(λ,μ为非零实数),求λ2+μ2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为.
求曲线C的直角坐标方程与直线l的极坐标方程;
Ⅱ若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中真命题是
A. 同垂直于一直线的两条直线互相平行
B. 底面各边相等,侧面都是矩形的四棱柱是正四棱柱
C. 过空间任一点与两条异面直线都垂直的直线有且只有一条
D. 过球面上任意两点的大圆有且只有一个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,以轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆的方程为被圆截得的弦长为.
(Ⅰ)求实数的值;
(Ⅱ)设圆与直线交于点,若点的坐标为,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知变量x,y满足约束条件,
(1)画出上述不等式组所表示的平面区域;
(2)求z=2x﹣y的最大值;
(3)求z=(x+1)2+(y﹣4)2的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
问:(1)由题意列出学生语文成绩与外语成绩关系的列联表:
语文优秀 | 语文不优秀 | 总计 | |
外语优秀 | |||
外语不优秀 | |||
总计 |
(2)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?(保留三位小数)
(附:)
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com