精英家教网 > 高中数学 > 题目详情

【题目】用合适的方法表示下列集合,并说明是有限集还是无限集.

1)到AB两点距离相等的点的集合

2)满足不等式的集合

3)全体偶数

4)被5除余1的数

520以内的质数

6

7)方程的解集

【答案】1)集合,无限集;

2)集合,无限集;

3)集合,无限集;

4)集合,无限集;

5)集合,有限集;

6)集合,有限集;

7)集合,有限集.

【解析】

1)由题意可知,点满足,用描述法表示该集合,即可.

2)用描述法表示该集合,即可.

3)由题意可知,偶数能被整除,用描述法表示该集合,即可.

4)用描述法表示该集合,即可.

5)由题意可知,20以内的质数有,用列举法表示该集合,即可.

6)由题意可知,方程的解为,用列举法表示该集合,即可.

7)用描述法表示该集合,即可.

1)因为到AB两点距离相等的点满足,所以集合,无限集.

2)由题意可知,集合,无限集.

3)因为偶数能被整除,所以集合,无限集.

4)由题意可知,集合,无限集.

5)因为20以内的质数有.

所以集合,有限集.

6)因为,所以方程的解为,所以集合,有限集.

7)由题意可知,集合,有限集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点,右焦点分别为,右准线为

(1)若直线上不存在点,使为等腰三角形,求椭圆离心率的取值范围;

(2)在(1)的条件下,当取最大值时,点坐标为,设是椭圆上的三点,且,求:以线段的中心为原点,过两点的圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点

(1)求的取值范围;

(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的奇偶性,并说明理由;

(2)若对于任意的恒成立,求满足条件的实数m的最小值M .

(3)对于(2)中的M,正数ab满足,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左,右焦点分别为 ,离心率为 是椭圆上的动点,当时, 的面积为.

(1)求椭圆的标准方程;

(2)若过点的直线交椭圆 两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求上的最小值;

2)若,当有两个极值点时,总有,求此时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为课外体育达标

(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为课外体育达标与性别有关?

课外体育不达标

课外体育达标

合计

60

110

合计

(2)现按照课外体育达标课外体育不达标进行分层抽样,抽取8人,再从这8名学生中随机抽取3人参加体育知识问卷调查,记课外体育不达标的人数为X,求X的分布列和数学期望.参考公式:

P(K2≥k0)

0.15

0.05

0.025

0.010

0.005

0.001

k0

2.072

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,过点的直线交椭圆于两点,为坐标原点.

(1)若的斜率为的中点,且的斜率为,求椭圆的方程;

(2)连结并延长,交椭圆于点,若椭圆的长半轴长是大于的给定常数,求的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,椭圆的四个顶点围成的四边形的面积为4.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)直线与椭圆交于 两点, 的中点在圆上,求为坐标原点)面积的最大值.

查看答案和解析>>

同步练习册答案