精英家教网 > 高中数学 > 题目详情

【题目】2020年初,一场新冠肺炎疫情突如其来,在党中央强有力的领导下,全国各地的医务工作者迅速驰援湖北,以大无畏的精神冲在了抗击疫情的第一线,迅速控制住疫情.但国外疫情严峻,输入性病例逐渐增多,为了巩固我国的抗疫成果,保护国家和人民群众的生命安全,我国三家生物高科技公司各自组成ABC三个科研团队进行加急疫苗研究,其研究方向分别是灭活疫苗、核酸疫苗和全病毒疫苗,根据这三家的科技实力和组成的团队成员,专家预测这ABC三个团队未来六个月中研究出合格疫苗并用于临床接种的概率分别为,且三个团队是否研究出合格疫苗相互独立.

1)求六个月后AB两个团队恰有一个研究出合格疫苗并用于临床接种的概率;

2)设六个月后研究出合格疫苗并用于临床接种的团队个数为X,求X的分布列和数学期望.

【答案】1;(2)分布列详见解析,数学期望为

【解析】

1AB两个团队恰有一个研究出合格疫苗并用于临床接种分两种情况:A团队研究出但B团队未研究出,B团队研究出但A团队未研究出,然后根据相互独立事件的概率求解即可;

2X的可能取值为0123,再根据相互独立事件的概率逐一求出每个X的取值所对应的概率即可得分布列,进而求得数学期望.

解:(1)由题意得,六个月后,AB两个团队恰有一个研究出合格疫苗并用于临床接种的概率为

2X的可能取值为0123

X的分布列为

X

0

1

2

3

P

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面四边形是直角梯形,底面的中点.

1)求证:平面

2)若直线与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,的中点,的交点.将沿折起到的位置,如图

)证明:平面

)若平面平面,求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】纹样是中国传统文化的重要组成部分,它既代表着中华民族的悠久历史、社会的发展进步,也是世界文化艺术宝库中的巨大财富.小楠从小就对纹样艺术有浓厚的兴趣.收集了如下9枚纹样微章,其中4枚凤纹徽章,5枚龙纹微章.小楠从9枚徽章中任取3枚,则其中至少有一枚凤纹徽章的概率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国农历的二十四节气是凝结着中华民族的智慧与传统文化的结晶,二十四节气歌是以春、夏、秋、冬开始的四句诗,20161130日,二十四节气正式被联合国教科文组织列入人类非物质文化遗产,也被誉为中国的第五大发明.某小学三年级共有学生500名,随机抽查100名学生并提问二十四节气歌,只能说出春夏两句的有45人,能说出春夏秋三句及其以上的有32人,据此估计该校三年级的500名学生中,对二十四节气歌只能说出第一句或一句也说不出的大约有(

A.69B.84C.108D.115

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】xyzRzx+2y)=m

1)若m1,求的最小值;

2)若x2+2y2+3z2m28,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年底,武汉发生新型冠状病毒肺炎疫情,国家卫健委紧急部署,从多省调派医务工作者前去支援,正值农历春节举家团圆之际,他们成为最美逆行者.武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者疑似的新冠肺炎患者无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等四类人员,强化网格化管理,不落一户不漏一人.若在排查期间,某小区有5人被确认为确诊患者的密切接触者,现医护人员要对这5人随机进行逐一核糖核酸检测,只要出现一例阳性,则将该小区确定为感染高危小区.假设每人被确诊的概率均为且相互独立,若当时,至少检测了4人该小区被确定为感染高危小区的概率取得最大值,则____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中有16个格点(ij),其中0≤i≤30≤j≤3.若在这16个点中任取n个点,这n个点中总存在4个点,这4个点是一个正方形的顶点,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线C1x=2以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,C2极坐标方程为:ρ22ρcosθ4ρsinθ+4=0.

1)求C1的极坐标方程和C2的普通方程;

2)若直线C3的极坐标方程为,设C2C3的交点为MN,又C1x=﹣2x轴交点为H,求△HMN的面积.

查看答案和解析>>

同步练习册答案