精英家教网 > 高中数学 > 题目详情

【题目】六艺源于中国周朝的贵族教育体系,具体包括礼、乐、射、御、书、数.某校在周末学生业余兴趣活动中开展了六艺知识讲座,每艺安排一节,连排六节,则满足必须排在前两节,两讲座必须相邻的不同安排种数为________

【答案】

【解析】

分步排课,首先将排在前两节,然后,捆绑一一起作为一个元素与其它两个元素合起来全排列,同时它们内部也全排列.

第一步:先将排在前两节,有种不同的排法;第二步:将两节讲座捆绑再和其他两艺全排有种不同的排法,所以满足必须排在前两节,两节讲座必须相邻的不同安排种数为

故答案为:24.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,P的中点.

1)求平面将三棱柱分成的两部分的体积之比;

2)求平面与平面ABC所成二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列项和为,且满足

(1)求数列的通项公式;

(2)求数列项和

(3)在数列中,是否存在连续的三项,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某企业生产某种产品的年固定成本为200万元,且每生产1吨该产品需另投入12万元,现假设该企业在一年内共生产该产品吨并全部销售完.每吨的销售收入为万元,且.

1)求该企业年总利润(万元)关于年产量(吨)的函数关系式;

2)当年产量为多少吨时,该企业在这一产品的生产中所获年总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表.

分类意识强

分类意识弱

合计

试点后

试点前

合计

已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为.

1)请将上面的列联表补充完整;

2)判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;

参考公式:,其中.

下面的临界值表仅供参考

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点为为上顶点,点为椭圆上一动点.

1)若,求直线轴的交点坐标;

2)设为椭圆的右焦点,过点轴垂直的直线为的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

空气质量

轻度污染

中度污染

重度污染

严重污染

如图是某市121-20AQI指数变化趋势:

下列叙述正确的是(

A.20天中AQI指数值的中位数略高于100

B.20天中的中度污染及以上的天数占

C.该市12月的前半个月的空气质量越来越好

D.总体来说,该市12月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为.

1)求的值;

2)试推断方程是否有实数解?若有实数解,请求出它的解集.

查看答案和解析>>

同步练习册答案