精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2-(a+3)x+4,
(1)若y=f(x)的两个零点为α,β,且满足0<α<2<β<4,求实数a的取值范围;
(2)若函数y=loga+1f(x)存在最值,求实数a的取值范围,并指出最值是最大值还是最小值.
分析:(1)画出对应图象,由图象得出的结论可以求出实数a的取值范围;
(2)先求真数的最值,再利用复合函数的最值求法求整个函数的最值即可,(注意底数满足的条件).
解答:精英家教网解:(1)满足条件的图形如下,
所以有
f(0)>0
f(2)<0
f(4)>0
f(0)<0
f(2)>0
f(4)<0

?
2
3
<a<1

故所求实数a的取值范围是 (
2
3
,1)

(2)因为f(x)=a(x-
a+3
2a
2+4-
(a+3)2
4a
.有最值为4-
(a+3)2
4a

当4-
(a+3)2
4a
>0时,
可得,a<0或1<a<9,又a+1>0?a>-1.
由复合函数的最值可得
当-1<a<0时,y=loga+1)f(x)存在最小值
当1<a<9时,y=loga+1)f(x)存在最小值.
故-1<a<0或1<a<9时,y=loga+1)f(x)存在最小值.
点评:本题涉及到一元二次方程的根的分布与系数的关系以及函数最值的应用,是对基础知识的综合考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案