【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为(其中为参数).在以为极点、轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,曲线:的焦点的极坐标为.
(1)求常数的值;
(2)设与交于、两点,且,求的大小.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,右焦点F到右准线的距离为3.
(1)求椭圆C的标准方程;
(2)设过F的直线l与椭圆C相交于P,Q两点.已知l被圆O:x2+y2=a2截得的弦长为,求△OPQ的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,为上任意一点,,的垂直平分线交于点,记点的轨迹为曲线.
(1)求曲线的方程;
(2)已知点,过的直线交于两点,证明:直线的斜率与直线的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的质量用其质量指标值来衡量)质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为配方和配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
配方的频数分布表:
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
频数 | 8 | 20 | 42 | 22 | 8 |
配方的频数分布表:
指标值分组 | [90,94) | [94,98) | [98,102) | [102,106] | [106,110] |
频数 | 4 | 12 | 42 | 32 | 10 |
(1)分别估计用配方、配方生产的产品的优质品率;
(2)已知用配方生产的一件产品的利润(单位:元)与其质量指标值的关系为,估计用配方生产的一件产品的利润大于的概率,并求用配方生产的上述件产品的平均利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的方程为(),,分别为椭圆的左右焦点,A,B为椭圆E上关于原点对称两点,点M为椭圆E上异于A,B一点,直线和直线的斜率和满足:.
(1)求椭圆E的标准方程;
(2)过作直线l交椭圆于C,D两点,且(),求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,其中左焦点(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(其中为参数),以原点为极点,以轴为极轴建立极坐标系,曲线的极坐标方程为(为常数,且),直线与曲线交于两点.
(1)若,求实数的值;
(2)若点的直角坐标为,且,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com