精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.
(Ⅰ)求证:A1B平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由.
(Ⅰ)证明:连接A1C,交AC1于点O,连接OD.
由ABC-A1B1C1是直三棱柱,得四边形ACC1A1为矩形,O为A1C的中点.
又D为BC中点,所以OD为△A1BC中位线,
所以A1BOD,
因为OD?平面ADC1,A1B?平面ADC1
所以A1B平面ADC1.…(4分)
(Ⅱ)由ABC-A1B1C1是直三棱柱,且∠ABC=90°,
故BA,BC,BB1两两垂直.
如图建立空间直角坐标系B-xyz.设BA=2,则B(0,0,0),C(2,0,0),A(0,2,0),C1(2,0,1),D(1,0,0).
所以
AD
=(1,-2,0)
AC1
=(2,-2,1)

设平面ADC1的法向量为
n
=(x,y,z),则有
n
AD
=0
n
AC1
=0

所以
x-2y=0
2x-2y+z=0.
取y=1,得
n
=(2,1,-2).
平面ADC的法向量为
v
=(0,0,1).
由二面角C1-AD-C是锐角,得cos<
n
v
>=
|
n
v
|
|
n
||
v
|
=
2
3
.…(8分)
所以二面角C1-AD-C的余弦值为
2
3

(Ⅲ)假设存在满足条件的点E.
因为E在线段A1B1上,A1(0,2,1),B1(0,0,1),故可设E(0,λ,1),其中0≤λ≤2.
所以
AE
=(0,λ-2,1)
DC1
=(1,0,1)

因为AE与DC1成60°角,所以|
AE
DC1
|
AE
||
DC1
|
|=
1
2

|
1
(λ-2)2+1
2
|=
1
2
,解得λ=1,舍去λ=3.
所以当点E为线段A1B1中点时,AE与DC1成60°角.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,ABCD-A1B1C1D1是四棱柱,AA1⊥底面ABCD,ABCD,AB⊥AD,AD=CD=AA1=1,AB=2.
(1)求证:A1C1⊥平面BCC1B1
(2)求平面A1BD与平面BCC1B1所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图直角梯形OABC中,∠COA=∠AOB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分别以OC,OA,OS为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求
SC
OB
夹角的余弦值;
(Ⅱ)求OC与平面SBC夹角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体AC1中,AB=BC=2,AA1=
2
,点E、F分别是面A1C1、面BC1的中心.
(1)求异面直线AF和BE所成的角;
(2)求直线AF和平面BEC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为2的正方体ABCD-A′B′C′D′中,E是BC的中点,F是DD′的中点
(1)求证:CF平面A′DE
(2)求二面角E-A′D-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥S-ABCD,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知∠DAB=135°,BC=2
2
,SB=SC=AB=2,F为线段SB的中点.
(Ⅰ)求证:SD平面CFA;
(Ⅱ)求面SCD与面SAB所成二面角大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是直角边等于4的等腰直角三角形,是斜边的中点,,向量的终点的内部(不含边界),则实数的取值范围是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

R,向量,则(    )
A.B.C.D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为平行四边形,若向量,则向量为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案