精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,直线截抛物线所得弦长为.

1)求的值;

2)若直角三角形的三个顶点在抛物线上,且直角顶点的横坐标为1,过点分别作抛物线的切线,两切线相交于点.

①若直线经过点,求点的纵坐标;

②求的最大值及此时点的坐标.

【答案】12)①-3.②最大值见解析,

【解析】

1)联立,求出交点,利用两点距离公式列方程求解即可;

2)①设点切线,化归为二次方程的根的问题,可得直线的方程,代入点,即可得点的纵坐标;②由题设知,即利用面积公式表示出,利用函数的性质求其最值.

解:(1,解得两交点为.

所以.

2)①设点.切线

由题设知

是方程的两根,于是.

故直线.又因为直线经过点

所以,即点的纵坐标为-3;

②由题设知,即.

,令

,令

当且仅当时,等号成立,此时点的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,过椭圆 的左右焦点分别作直线 交椭圆于,且.

(1)求证:当直线的斜率与直线的斜率都存在时, 为定值;

(2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜三棱柱ABCA1B1C1,已知侧面BB1C1C与底面ABC垂直且∠BCA=90°,∠B1BC=60°BC=BB1=2,若二面角AB1BC30°

1)求AB1与平面BB1C1C所成角的正切值;

2)在平面AA1B1B内找一点P,使三棱锥PBB1C为正三棱锥,并求P到平面BB1C距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)写出圆的参数方程和直线的直角坐标方程;

2)设点上,点Q在上,求的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①;②;③ 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.

中,内角ABC的对边分别为abc且满足________________,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知函数(其中),其部分图像如图所示.

I)求的解析式;

II)求函数在区间上的最大值及相应的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,若输出,则判断框中为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已过抛物线的焦点作直线交抛物线两点,以两点为切点作抛物线的切线,两条直线交于点.

1)当直线平行于轴时,求点的坐标;

2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

上是单调递增函数,求的取值范围;

,当时,若,且,求证:.

查看答案和解析>>

同步练习册答案