精英家教网 > 高中数学 > 题目详情

【题目】如图所示,所在平面互相垂直,且分别为的中点.

(1)求证:

(2)求二面角的正弦值.

【答案】(1)证明见解析;(2)

【解析】

试题分析:(1)以为坐标原点,在平面内过作垂直的直线,并将其作为轴,所在直线为轴,在平面内过作垂直的直线,并将其作为轴,建立如图所示空间直角坐标系,利用向量的运算,即可证得;(2)求得平面的一个法向量为,设平面的法向量,利用法向量所成的角,即可求解二面角的大小.

试题解析:(1)证明:由题意,以为坐标原点,在平面内过作垂直的直线,并将其作为轴,所在直线为轴,在平面内过作垂直的直线,并将其作为轴,建立如图所示空间直角坐标系,易得,因而

因此,从而

(2)在图中,平面的一个法向量为,设平面的法向量

,得其中一个

设二面角的大小为,且由题知为锐角,

,因此

即所求二面角正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.

(1)求曲线的方程;

(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;

(3)记的面积为的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)如是函数的极值点,求实数的值并讨论的单调性

(2)若是函数的极值点,且恒成立,求实数的取值范围(注:已知常数满足.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面,四边形是直角梯形,其中. .

1)求异面直线所成角的大小;

2)若平面内有一经过点的曲线,该曲线上的任一动点都满足所成角的大小恰等于所成角.试判断曲线的形状并说明理由;

3)在平面内,设点是(2)题中的曲线在直角梯形内部(包括边界)的一段曲线上的动点,其中为曲线的交点.为圆心,为半径的圆分别与梯形的边交于两点.点在曲线段上运动时,试求圆半径的范围及的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆轴,轴的正半轴分别交于两点,原点到直线的距离为,该椭圆的离心率为.

(1)求椭圆的方程;

(2)过点的直线与椭圆交于两个不同的点,求线段的垂直平分线在轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有当点横坐标为时,为正三角形

(1)求的方程;

(2)若直线,且 有且只有一个公共点

证明直线过定点,并求出定点坐标;

的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在四棱锥中,底面是正方形,

(1)如图2,设点的中点,点的中点,求证: 平面

(2)已知网格纸上小正方形的边长为,请你在网格纸上用粗线画图1中四棱锥的府视图(不需要标字母),并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市要建成宜商、宜居的国际化新城,该城市的东城区、西城区分别引进8个厂家,现对两个区域的16个厂家进行评估,综合得分情况如茎叶图所示.

(1)根据茎叶图判断哪个区域厂家的平均分较高;

(2)规定85分以上(含85分)为优秀厂家,若从该两个区域各选一个优秀厂家,求得分差距不超过5分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示中的最大值.已知函数

(1)设求函数上零点的个数

(2)试探讨是否存在实数使得恒成立若存在的取值范围若不存在说明理由

查看答案和解析>>

同步练习册答案