精英家教网 > 高中数学 > 题目详情

【题目】已知平面上的线段及点,任取上的一点,线段长度的最小值称为点到线段的距离,记为,设,若满足,则关于的函数解析式为________

【答案】

【解析】

寻找平面内到线段的距离等于到线段的距离相等的点的轨迹,当时,轴上的点到线段的距离等于到线段的距离,当时,点到线段的距离即为到点的距离,到点的距离等于到直线的距离相等的点的轨迹为抛物线,当时,满足到线段的距离等于到线段的距离即为到点与到点的距离相等点,从而求出关于的函数解析式.

根据题意画出线段与线段

满足

满足到线段的距离等于到线段的距离,

时,轴上的点到线段的距离等于到线段的距离,故

时,点到线段的距离即为到点的距离,到点的距离等于到直线的距离相等的点的轨迹为抛物线,

根据抛物线的定义可知点是抛物线的焦点,是准线,则

,即

时,满足到线段的距离等于到线段的距离即为到点与到点的距离相等点,在平面内到两定点距离相等的点即为线段的垂直平分线,

的轨迹为

关于的函数解析式为:

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线交于两点,且的面积为16(为坐标原点).

(1)求的方程.

(2)直线经过的焦点不与轴垂直,交于两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20171月至201912月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是(  )

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位数为30万人

D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用一个长为,宽为的矩形铁皮(如图1)制作成一个直角圆形弯管(如图3):先在矩形的中间画一条曲线,并沿曲线剪开,将所得的两部分分别卷成体积相等的斜截圆柱状(如图2),然后将其中一个适当翻转拼接成直角圆形弯管(如图3)(不计拼接损耗部分),并使得直角圆形弯管的体积最大;

1)求直角圆形弯管(图3)的体积;

2)求斜截面椭圆的焦距;

3)在相应的图1中建立适当的坐标系,使所画的曲线的方程为,求出方程并画出大致图像;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,函数,且函数是偶函数,函数在区间上的减函数,且在区间上是增函数.

1)求函数的解析式;

2)求实数的值;

3)设,问是否存在实数,使得在区间上有最小值为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有五个命题:

①函数的最小正周期是

②终边在轴上的角的集合是

③在同一坐标系中,函数的图象和函数的图象有三个公共点;

④把函数的图象向右平移个单位得到的图象;

⑤函数上是减函数;

其中真命题的序号是(  )

A.①②⑤B.①④C.③⑤D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本为万元.

1)若使每台机器人的平均成本最低,问应买多少台?

2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图).经实验知,每台机器人的日平均分拣量为,(单位:件).已知传统的人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大时,用人数量比引进机器人前的用人数量最多可减少百分之几?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形是一个历史文物展览厅的俯视图,点上,在梯形区域内部展示文物,是玻璃幕墙,游客只能在区域内参观.在上点处安装一可旋转的监控摄像头.为监控角,其中在线段(含端点)上,且点在点的右下方.经测量得知:米,米,米,.记(弧度),监控摄像头的可视区域的面积为平方米.

(1)求关于的函数关系式,并写出的取值范围;(参考数据:

(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:极坐标与参数方程

已知在平面直角坐标系xOyO为坐标原点曲线C (α为参数)在以平面直角坐标系的原点为极点x轴的正半轴为极轴取相同单位长度的极坐标系直线lρ.

()求曲线C的普通方程和直线l的直角坐标方程;

()曲线C上恰好存在三个不同的点到直线l的距离相等分别求出这三个点的极坐标

查看答案和解析>>

同步练习册答案