【题目】已知直线的参数方程: (为参数),曲线的参数方程: (为参数),且直线交曲线于两点.
(1)将曲线的参数方程化为普通方程,并求时, 的长度;
(2)巳知点,求当直线倾斜角变化时, 的范围.
科目:高中数学 来源: 题型:
【题目】在△ABC中,BC边上的高所在直线的方程为x+2y+3=0,∠A的平分线所在直线的方程为y=0,若点B的坐标为(﹣1,﹣2),分别求点A和点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量(单位:万元)和收益(单位:万元)的数据如下表:
月份 | ||||||
广告投入量 | ||||||
收益 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程
(ⅱ)若广告投入量时,该模型收益的预报值是多少?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①在同一坐标系中,与的图象关于轴对称
②函数是奇函数
③函数的图象关于成中心对称
④函数的最大值为
以上四个判断正确有_____________.(写上序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据不完全统计,某厂的生产原料耗费(单位:百万元)与销售额(单位:百万元)如下:
2 | 4 | 6 | 8 | |
30 | 40 | 50 | 70 |
变量、为线性相关关系.
(1)求线性回归方程必过的点;
(2)求线性回归方程;
(3)若实际销售额要求不少于百万元,则原材料耗费至少要多少百万元。
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:
7327 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该运动员射击4次至少击中3次的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x).
(1)画出函数f(x)的图象,根据图象直接写出f(x)的值域;
(2)根据图象直接写出满足f(x)≥2的所有x的集合;
(3)若f(x)的递减区间为(﹣∞,a),递增区间为(b,+∞),直接写出a的最大值,b的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com