精英家教网 > 高中数学 > 题目详情
(2012•吉林二模)户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,对本单位的50名员工进行了问卷调查,得到了如下列联表:
喜欢户外运动 不喜欢户外运动 合计
男性 5
女性 10
合计 50
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是
3
5

(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由;
(Ⅲ)经进一步调查发现,在喜欢户外运动的10名女性员工中,有4人还喜欢瑜伽.若从喜欢户外运动的10位女性员工中任选3人,记ξ表示抽到喜欢瑜伽的人数,求ξ的分布列和数学期望.
下面的临界值表仅供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad+bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
分析:(Ⅰ)根据在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是
3
5
,可得喜欢户外活动的男女员工共30人,其中男员工20人,从而可得列联表;
(Ⅱ)利用列联表,计算K2=
n(ad+bc)2
(a+b)(c+d)(a+c)(b+d)
,与临界值比较,可得结论;
(Ⅲ)ξ的可能取值为0,1,2,3,求出相应的概率,可得ξ的分布列与数学期望.
解答:解:(Ⅰ)∵在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是
3
5

∴喜欢户外活动的男女员工共30人,其中男员工20人,列联表补充如下:
喜欢户外运动 不喜欢户外运动 合计
男性 20 5 25
女性 10 15 25
合计 30 20 50
(Ⅱ)K2=
50×(20×15-10×5)2
30×20×25×25
≈8.333>7.879

∴有99.5%的把握认为喜欢户外运动与性别有关;
(Ⅲ)ξ的可能取值为0,1,2,3,则
P(ξ=0)=
C
3
6
C
3
10
=
1
6
;P(ξ=1)=
C
2
6
C
1
4
C
3
10
=
1
2
;P(ξ=2)=
C
1
6
C
2
4
C
3
10
=
3
10
;P(ξ=3)=
1
30

∴ξ的分布列为
 ξ  0  1  2  3
 P  
1
6
 
1
2
 
3
10
 
1
30
数学期望Eξ=0×
1
6
+1×
1
2
+2×
3
10
+3×
1
30
=
6
5
点评:本题考查概率与统计知识,考查离散型随机变量的分布列与期望,确定变量的取值,计算概率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•吉林二模)设函数f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)设集合A={x|0≤x<1},B={x|1≤x≤2},函数f(x)=
2x,(x∈A)
4-2x,(x∈B)
,x0∈A且f[f(x0)]∈A,则x0的取值范围是
log2
3
2
,1
log2
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)设函数f(x)=
1-a2
x2+ax-lnx (a∈R)
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)△ABC内角A,B,C的对边分别是a,b,c,若c=2
3
b
sin2A-sin2B=
3
sinBsinC
,则A=
π
6
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)执行程序框图,若输出的结果是
15
16
,则输入的a为(  )

查看答案和解析>>

同步练习册答案