精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

【答案】)见解析(

【解析】

试题()连接AC1A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1平面A1CD.()由题意可得此直三棱柱的底面ABC为等腰直角三角形,由DAB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1DDEA1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为SA1DECD,运算求得结果

试题解析:(1)证明:连结AC1A1C于点F,则FAC1中点又DAB中点,

连结DF,则BC1∥DF3

因为DF平面A1CDBC1不包含于平面A1CD4

所以BC1平面A1CD5

2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CBDAB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A18

AA1=AC=CB=2∠ACB=90°A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D 10

所以三菱锥C﹣A1DE的体积为:==112

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,五面体ABCDE中,四边形ABDE是菱形,△ABC是边长为2的正三角形,∠DBA=60°,
(1)证明:DC⊥AB;
(2)若点C在平面ABDE内的射影H,求CH与平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市组织了一次高二调研考试,考试后统计的数学成绩服从正态分布,其密度函数, x(-∞,+∞),则下列命题不正确的是( )

A. 该市这次考试的数学平均成绩为80

B. 分数在120分以上的人数与分数在60分以下的人数相同

C. 分数在110分以上的人数与分数在50分以下的人数相同

D. 该市这次考试的数学成绩标准差为10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次函数

1)写出该函数的顶点坐标;

2)如果该函数在区间上的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex(x3﹣3x+3)﹣aex﹣x(x≥﹣2),若不等式f(x)≤0有解,则实数α的最小值为(
A.
B.2﹣
C.1﹣
D.1+2e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C的方程为 ,点 ,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(1)求曲线C的直角坐标方程及点R的直角坐标;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值及此时点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线的极坐标方程为,圆C的参数方程为

(1)求直线被圆C所截得的弦长;

(2)已知点,过点的直线与圆所相交于不同的两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对某种食材营养价值的认识程度,某档健康养生电视节目组织名营养专家和名现场观众各组成一个评分小组,给食材的营养价值打分(十分制).下面是两个小组的打分数据:

第一小组

第二小组

(1)求第一小组数据的中位数与平均数,用这两个数字特征中的哪一种来描述第一小组打分的情况更合适?说明你的理由.

(2)你能否判断第一小组与第二小组哪一个更像是由营养专家组成的吗?请比较数字特征并说明理由.

(3)节目组收集了烹饪该食材的加热时间:(单位:)与其营养成分保留百分比的有关数据:

食材的加热时间(单位:

营养成分保留百分比

在答题卡上画出散点图,求关于的线性回归方程(系数精确到),并说明回归方程中斜率的含义.

附注:参考数据:.

参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图象在处的切线方程为,求的值;

(2)若,使成立,求的取值范围.

查看答案和解析>>

同步练习册答案