精英家教网 > 高中数学 > 题目详情

【题目】11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.

1)经过1轮投球,记甲的得分为,求的分布列;

2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.

①求

②规定,经过计算机计算可估计得,请根据①中的值分别写出ac关于b的表达式,并由此求出数列的通项公式.

【答案】(1)分布列见解析;(2)①;②.

【解析】

1)经过1轮投球,甲的得分的取值为,记一轮投球,甲投中为事件,乙投中为事件相互独立,计算概率后可得分布列;

2)由(1)得,由两轮的得分可计算出,计算时可先计算出经过2轮后甲的得分的分布列(的取值为),然后结合的分布列和的分布可计算

,代入,得两个方程,解得,从而得到数列的递推式,变形后得是等比数列,由等比数列通项公式得,然后用累加法可求得

1)记一轮投球,甲命中为事件,乙命中为事件相互独立,由题意,甲的得分的取值为

的分布列为:

1

0

1

2)由(1

同理,经过2轮投球,甲的得分取值

,则

由此得甲的得分的分布列为:

2

1

0

1

2

,∴

代入得:

∴数列是等比数列,公比为,首项为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平行志愿投档录取模式是高考志愿的一种新方式,2008年教育部在6个省区实行平行志愿投档录取模式的试点改革.一年的实践证叨,实行平行志愿投档录取模式,有效降低了考生志愿填报风险.平行志愿是这样规定:在同一批次设置几个志愿,当考生分数达到这几个学校提档线时,本批次的志愿依次检索录取.某考生根据对自己的高考分数和对往年学校录取情况分析,从报考指南中选择了10所学校,作出如下表格:

学校

专业

数学系

计算机系

物理系

录取概率

0.5

0.5

0.6

0.9

0.5

0.7

0.8

0.7

0.8

0.9

1)该考生从上表中的10所学校中选择4所学校填报,记为选择的4所学校中报数学系专业的个数,求的分布列及其期望

2)若该考生选择了4个学校在同一批次填报志愿,填报志愿表如下,如果仅以该考生对自己分析的录取概率为依据,当改变这4个志愿填报的顺序时,是否改变他本批次录取的可能性?请说明理由.

志愿

学校

第一志愿

第二志愿

第三志愿

第四志愿

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数ab满足a2+b2-ab3

1)求a-b的取值范围;

2)若ab0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当吋,解不等式

2)设.

①当时,若存在,使得,证明:

②当时,讨论的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的离心率为,点在椭圆C上,直线与椭圆C交于不同的两点AB.

1)求椭圆C的方程;

2)直线分别交y轴于MN两点,问:x轴上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,斜率为的直线与椭圆交于两点,点在直线的左上方.

1)若以为直径的圆恰好经过椭圆右焦点,求此时直线的方程;

2)求证:的内切圆的圆心在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数在点处的切线方程;

2)设函数上有且只有一个零点,求的取值范围.(其中为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】检验中心为筛查某种疾病,需要检验血液是否为阳性,对份血液样本,有以下两种检验方式:①逐份检验,需要检验次;②混合检验,即将其中)份血液样本分别取样混合在一起检验,若检验结果为阴性,这份的血液全为阴性,因而这份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,再对这份再逐份检验,此时这份血液的检验次数总共为.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.

1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;

2)现取其中)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为点.时,根据的期望值大小,讨论当取何值时,采用逐份检验方式好?

(参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着运动app和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.“健步达人”小王某天统计了他朋友圈中所有好友(共500人)的走路步数,并整理成下表:

分组(单位:千步)

频数

60

240

100

60

20

18

0

2

1)请估算这一天小王朋友圈中好友走路步数的平均数(同一组中数据以这组数据所在区间中点值作代表);

2)若用表示事件“走路步数低于平均步数”,试估计事件发生的概率;

3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中岁数在40岁以上的中老年人共有300人,其中健步达人恰有150人,请填写下面列联表.根据列联表判断,有多大把握认为,健步达人与年龄有关?

健步达人

非健步达人

合计

40岁以上

不超过40

合计

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案