精英家教网 > 高中数学 > 题目详情
如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.
(Ⅰ)由抛物线方程,得焦点F2(1,0).
所以椭圆E的方程为:
x2
b2+1
+
y2
b2
=1

解方程组
y2=4x
x=1
得C(1,2),D(1,-2).
由于抛物线、椭圆都关于x轴对称,
|F2C|
|F2S|
=
|CD|
|ST|
=2
2
|F2S|=
2
2
,∴S(1,
2
2
)

因此,
1
b2+1
+
1
2b2
=1
,解得b2=1并推得a2=2.
故椭圆的方程为
x2
2
+y2=1

(Ⅱ)由题意知直AB的斜率存在.
AB:y=k(x-2),设A(x1,y1),B(x2,y2),P(x,y)
代入椭圆方程,得(1+2k2)x2-8k2x+8k2-2=0,
△=64k4-4(2k2+1)(8k2-2)>0,k2
1
2

∴x1x2=
8k2-2
1+2k2
,x1+x2=
8k2
1+2k2

|
PA
-
PB
|<
2
5
3

1+k2
|x1-x2|<
2
5
3

∴(1+k2)[
(8k2)2
(1+2k2)2
-4×
8k2-2
1+2k2
]<
20
9

∴(4k2-1)(14k2+13)>0,
∴k2
1
4

1
4
<k2
1
2

∵满足
OA
+
OB
=t
OP

∴(x1+x2,y1+y2)=t(x,y),
∴x=
x1+x2
t
=
8k2
t(1+2k2)
,y=
y1+y2
t
=
-4k
t(1+2k2)

∵点P在椭圆上,
[
8k2
t(1+2k2)
]2+2[
-4k
t(1+2k2)
]2=2

∴16k2=t2(1+2k2
∴t2=
16k2
1+2k2
=8-
8
1+2k2
,由于
1
4
<k2
1
2

∴-2<t<-
2
6
3
2
6
3
<t<2
∴实数t取值范围为:-2<t<-
2
6
3
2
6
3
<t<2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知直线l:y=2x-4交抛物线y2=4x于A、B两点,试在抛物线AOB这段曲线上求一点P,使△ABP的面积最大,并求这个最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(0,4),离心率为
3
5

(1)求C的方程;
(2)求过点(3,0)且斜率为
4
5
的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
4
+y2=1的左、右顶点分别为A、B,圆x2+y2=4上有一动点P,P在x轴上方,C(1,0),直线PA交椭圆E于点D,连结DC,PB.
(Ⅰ)若∠ADC=90°,求△ADC的面积S;
(Ⅱ)设直线PB,DC的斜率存在且分别为k1,k2,若k1=2k2,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若
AM
=
1
2
MB
,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l与双曲线
x2
2
-y2=1
的同一支相交于A,B两点,线段AB的中点在直线y=2x上,则直线AB的斜率为(  )
A.4B.2C.
1
2
D.
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,椭圆C1右焦点到右准线的距离为
2
4
,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B.
(1)求椭圆C1的方程;
(2)若直线EA、EB分别与椭圆C1相交于另一个交点为点P、M.
①求证:直线MP经过一定点;
②试问:是否存在以(m,0)为圆心,
3
2
5
为半径的圆G,使得直线PM和直线AB都与圆G相交?若存在,请求出所有m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦点分别为F1,F2,线段F1F2被抛物线y2=2bx的焦点F内分成了3:1的两段.
(1)求椭圆的离心率;
(2)过点C(-1,0)的直线l交椭圆于不同两点A、B,且
AC
=2
CB
,当△AOB的面积最大时,求直线l和椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点为F1(-c,0),F2(c,0),点Q是椭圆外的动点,满足|
F1Q
|=2a
,点P是线段F1Q与该椭圆的交点
(1)若点P的横坐标为
a
2
,证明:|
F1P
|=a+
c
2

(2)若存在点Q,使得△F1QF2的面积等于b2,求椭圆离心率的取值范围.

查看答案和解析>>

同步练习册答案