精英家教网 > 高中数学 > 题目详情
7.过抛物线x2=4y的焦点且与其对称轴垂直的弦AB的长度是(  )
A.1B.2C.4D.8

分析 求出抛物线的焦点坐标,y=1时,x=±2,即可得出结论.

解答 解:由题意,抛物线的焦点坐标为(0,1).
y=1时,x=±2,∴过抛物线x2=4y的焦点且与其对称轴垂直的弦AB的长度是4,
故选C.

点评 本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知△ABC三边a,b,c上的高分别为$\frac{1}{2},\frac{{\sqrt{2}}}{2},1$,则cosA=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,空间四边形OABC中,E,F分别为OA,BC的中点,设$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c,试用a,b,c表示$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$g(x)=2\sqrt{3}sinx•cosx+2{cos^2}x+m$在区间$[0,\frac{π}{2}]$的最大值为6.
(1)求常数m的值;
(2)求函数g(x)在x∈R时的最小值并求出相应x的取值集合.
(3)求函数y=g(-x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\vec a=(3,4)$,$\vec b=(9,x)$,$\vec c=(4,y)$且$\vec a∥\vec b$,$\vec a⊥\vec c$.
(1)求$\overrightarrow{b}$与$\overrightarrow{c}$;
(2)若$\vec m=2\vec a-\vec b$,$\vec n=\vec a+\vec c$,求向量$\overrightarrow{m}$与$\overrightarrow{n}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设F1,F2分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点,M是椭圆C上一点,且直线MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为$\frac{3}{4}$,求C的离心率;
(2)若直线MN在y轴上的截距为2,且MN=5F1N,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA发射后又回到原点P(如图11).若光线QR经过△ABC的重心,则BP等于(  )
A.2B.1C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正方形的中心为(0,-1),其中一条边所在的直线方程为3x+y-2=0.求其他三条边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(α)=sinα•cosα.
(1)若f(α)=$\frac{1}{8}$,且$\frac{π}{4}$<α<$\frac{π}{2}$,求cosα-sinα的值;
(2)若α=-$\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

同步练习册答案