如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M为PC上一点,PA=PD=2,BC=AD=1,CD=.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C为30°,设PM=MC,试确定的值.
证明:(Ⅰ)∵AD // BC,BC=AD,Q为AD的中点,
∴四边形BCDQ为平行四边形,∴CD // BQ . ………………… 2分
∵∠ADC=90° ∴∠AQB=90° 即QB⊥AD.
又∵平面PAD⊥平面ABCD
且平面PAD∩平面ABCD=AD, …………………… 4分
∴BQ⊥平面PAD. …………………… 5分
∵BQ平面PQB,
∴平面PQB⊥平面PAD. ………………… 6分
另证:AD // BC,BC=AD,Q为AD的中点,
∴ BC // DQ 且BC= DQ,
∴ 四边形BCDQ为平行四边形,∴CD // BQ .
∵ ∠ADC=90° ∴∠AQB=90° 即QB⊥AD.
∵ PA=PD, ∴PQ⊥AD.
∵ PQ∩BQ=Q,∴AD⊥平面PBQ.
∵ AD平面PAD,
∴平面PQB⊥平面PAD.
(Ⅱ)∵PA=PD,Q为AD的中点, ∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD. ………………………… 8分
(不证明PQ⊥平面ABCD直接建系扣1分)
如图,以Q为原点建立空间直角坐标系.
则平面BQC的法向量为;
,,,.…11分
设,
则,,
∵,
∴ ,
∴ ………… 10分
在平面MBQ中,,,
∴ 平面MBQ法向量为. … 11分
∵二面角M-BQ-C为30°, ,
∴ . ……………… 12分
【解析】略
科目:高中数学 来源: 题型:
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com